Suppr超能文献

用于高效鱼苗计数的反卷积增强关键点网络

Deconvolution Enhancement Keypoint Network for Efficient Fish Fry Counting.

作者信息

Li Ximing, Liang Zhicai, Zhuang Yitao, Wang Zhe, Zhang Huan, Gao Yuefang, Guo Yubin

机构信息

College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China.

College of Foreign Studies, South China Agricultural University, Guangzhou 510642, China.

出版信息

Animals (Basel). 2024 May 17;14(10):1490. doi: 10.3390/ani14101490.

Abstract

Fish fry counting has been vital in fish farming, but current computer-based methods are not feasible enough to accurately and efficiently calculate large number of fry in a single count due to severe occlusion, dense distribution and the small size of fish fry. To address this problem, we propose the deconvolution enhancement keypoint network (DEKNet), a method for fish fry counting that features a single-keypoint approach. This novel approach models the fish fry as a point located in the central part of the fish head, laying the foundation for our innovative counting strategy. To be specific, first, a fish fry feature extractor (FFE) characterized by parallel dual branches is designed for high-resolution representation. Next, two identical deconvolution modules (TDMs) are added to the generation head for a high-quality and high-resolution keypoint heatmap with the same resolution size as the input image, thus facilitating the precise counting of fish fry. Then, the local peak value of the heatmap is obtained as the keypoint of the fish fry, so the number of these keypoints with coordinate information equals the number of fry, and the coordinates of the keypoint can be used to locate the fry. Finally, FishFry-2023, a large-scale fish fry dataset, is constructed to evaluate the effectiveness of the method proposed by us. Experimental results show that an accuracy rate of 98.59% was accomplished in fish fry counting. Furthermore, DEKNet achieved a high degree of accuracy on the Penaeus dataset (98.51%) and an MAE of 13.32 on a public dataset known as Adipocyte Cells. The research outcomes reveal that DEKNet has superior comprehensive performance in counting accuracy, the number of parameters and computational effort.

摘要

鱼苗计数在养鱼业中至关重要,但由于严重遮挡、分布密集以及鱼苗尺寸小,当前基于计算机的方法在单次计数中难以准确高效地计算大量鱼苗。为解决这一问题,我们提出了反卷积增强关键点网络(DEKNet),这是一种采用单关键点方法的鱼苗计数方法。这种新颖的方法将鱼苗建模为位于鱼头中心部分的一个点,为我们创新的计数策略奠定了基础。具体而言,首先,设计了一个具有并行双分支的鱼苗特征提取器(FFE),用于高分辨率表示。接下来,在生成头中添加了两个相同的反卷积模块(TDM),以生成与输入图像分辨率大小相同的高质量、高分辨率关键点热图,从而便于精确计数鱼苗。然后,获取热图的局部峰值作为鱼苗的关键点,因此这些带有坐标信息的关键点数量等于鱼苗数量,并且关键点的坐标可用于定位鱼苗。最后,构建了一个大规模鱼苗数据集FishFry - 2023来评估我们提出的方法的有效性。实验结果表明,鱼苗计数的准确率达到了98.59%。此外,DEKNet在对虾数据集上达到了98.51%的高精度,在一个名为脂肪细胞的公共数据集上平均绝对误差为13.32。研究结果表明,DEKNet在计数精度、参数数量和计算量方面具有卓越的综合性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ee/11117205/782179216374/animals-14-01490-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验