Suppr超能文献

用于能量存储、转换和产生的导电凝胶:材料设计策略、性能及应用

Conductive Gels for Energy Storage, Conversion, and Generation: Materials Design Strategies, Properties, and Applications.

作者信息

Bari Gazi A K M Rafiqul, Jeong Jae-Ho, Barai Hasi Rani

机构信息

School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.

School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea.

出版信息

Materials (Basel). 2024 May 11;17(10):2268. doi: 10.3390/ma17102268.

Abstract

Gel-based materials have garnered significant interest in recent years, primarily due to their remarkable structural flexibility, ease of modulation, and cost-effective synthesis methodologies. Specifically, polymer-based conductive gels, characterized by their unique conjugated structures incorporating both localized sigma and pi bonds, have emerged as materials of choice for a wide range of applications. These gels demonstrate an exceptional integration of solid and liquid phases within a three-dimensional matrix, further enhanced by the incorporation of conductive nanofillers. This unique composition endows them with a versatility that finds application across a diverse array of fields, including wearable energy devices, health monitoring systems, robotics, and devices designed for interactive human-body integration. The multifunctional nature of gel materials is evidenced by their inherent stretchability, self-healing capabilities, and conductivity (both ionic and electrical), alongside their multidimensional properties. However, the integration of these multidimensional properties into a single gel material, tailored to meet specific mechanical and chemical requirements across various applications, presents a significant challenge. This review aims to shed light on the current advancements in gel materials, with a particular focus on their application in various devices. Additionally, it critically assesses the limitations inherent in current material design strategies and proposes potential avenues for future research, particularly in the realm of conductive gels for energy applications.

摘要

近年来,基于凝胶的材料引起了广泛关注,主要是因为它们具有出色的结构灵活性、易于调制以及经济高效的合成方法。具体而言,基于聚合物的导电凝胶,其独特的共轭结构包含局部的σ键和π键,已成为众多应用的首选材料。这些凝胶在三维基质中展现出固液相的出色整合,通过加入导电纳米填料进一步增强。这种独特的组成赋予它们多功能性,可应用于包括可穿戴能量设备、健康监测系统、机器人技术以及为交互式人体集成设计的设备等各种领域。凝胶材料的多功能性体现在其固有的拉伸性、自愈能力、导电性(离子导电性和电子导电性)以及多维特性上。然而,将这些多维特性整合到单一凝胶材料中,以满足各种应用中特定的机械和化学要求,是一项重大挑战。本综述旨在阐明凝胶材料的当前进展,特别关注其在各种设备中的应用。此外,它批判性地评估了当前材料设计策略中固有的局限性,并提出了未来研究的潜在途径,特别是在用于能量应用的导电凝胶领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b03f/11123231/e21552db62dd/materials-17-02268-g001.jpg

相似文献

2
Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications.
Acc Chem Res. 2017 Jul 18;50(7):1734-1743. doi: 10.1021/acs.accounts.7b00191. Epub 2017 Jun 26.
3
Recent Progress in Bionic Skin Based on Conductive Polymer Gels.
Macromol Rapid Commun. 2021 Nov;42(22):e2100480. doi: 10.1002/marc.202100480. Epub 2021 Sep 20.
4
Conductive Gels: Properties and Applications of Nanoelectronics.
Nanoscale Res Lett. 2022 May 2;17(1):50. doi: 10.1186/s11671-022-03687-3.
5
High-Performing Conductive Hydrogels for Wearable Applications.
Gels. 2023 Jul 6;9(7):549. doi: 10.3390/gels9070549.
7
Multifunctional conductive hydrogels and their applications as smart wearable devices.
J Mater Chem B. 2021 Mar 21;9(11):2561-2583. doi: 10.1039/d0tb02929g. Epub 2021 Feb 18.
8
A review of electro-stimulated gels and their applications: Present state and future perspectives.
Mater Sci Eng C Mater Biol Appl. 2019 Oct;103:109852. doi: 10.1016/j.msec.2019.109852. Epub 2019 Jun 7.
9
Water-Resistant Conductive Gels toward Underwater Wearable Sensing.
Adv Mater. 2023 Oct;35(42):e2211758. doi: 10.1002/adma.202211758. Epub 2023 Jul 25.
10
Solvent-Triggered, Ultra-Adhesive, Conductive, and Biocompatible Transition Gels for Wearable Devices.
Small. 2024 Jun;20(26):e2310731. doi: 10.1002/smll.202310731. Epub 2024 Jan 21.

本文引用的文献

2
Advancements in Biomass-Derived Activated Carbon for Sustainable Hydrogen Storage: A Comprehensive Review.
Chem Asian J. 2024 Aug 19;19(16):e202300780. doi: 10.1002/asia.202300780. Epub 2023 Oct 24.
3
Rapidly Synthesized Single-Ion Conductive Hydrogel Electrolyte for High-Performance Quasi-Solid-State Zinc-ion Batteries.
Angew Chem Int Ed Engl. 2023 Nov 6;62(45):e202312020. doi: 10.1002/anie.202312020. Epub 2023 Sep 27.
4
A Bio-Inspired Methylation Approach to Salt-Concentrated Hydrogel Electrolytes for Long-Life Rechargeable Batteries.
Angew Chem Int Ed Engl. 2023 Oct 23;62(43):e202311589. doi: 10.1002/anie.202311589. Epub 2023 Sep 18.
5
High-Performing Conductive Hydrogels for Wearable Applications.
Gels. 2023 Jul 6;9(7):549. doi: 10.3390/gels9070549.
6
Solvent control of water O-H bonds for highly reversible zinc ion batteries.
Nat Commun. 2023 May 11;14(1):2720. doi: 10.1038/s41467-023-38384-x.
7
Engineering Smart Composite Hydrogels for Wearable Disease Monitoring.
Nanomicro Lett. 2023 Apr 15;15(1):105. doi: 10.1007/s40820-023-01079-5.
8
Tough Hydrogel Electrolytes for Anti-Freezing Zinc-Ion Batteries.
Adv Mater. 2023 May;35(18):e2211673. doi: 10.1002/adma.202211673. Epub 2023 Mar 18.
9
Conducting gels for wearable bioelectronic devices.
J Mater Chem B. 2023 Jan 25;11(4):699-701. doi: 10.1039/d2tb90199d.
10
Baghdadite: A Novel and Promising Calcium Silicate in Regenerative Dentistry and Medicine.
ACS Omega. 2022 Dec 1;7(49):44532-44541. doi: 10.1021/acsomega.2c05596. eCollection 2022 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验