Malki M, Horstemeyer M F, Cho H E, Peterson L A, Dickel D, Capolungo L, Baskes M I
Aerospace and Automotive Department, International University of Rabat, Rabat 11103, Morocco.
School of Engineering, Liberty University, Lynchburg, VA 24515, USA.
Materials (Basel). 2024 May 17;17(10):2412. doi: 10.3390/ma17102412.
We present a macroscale constitutive model that couples magnetism with thermal, elastic, plastic, and damage effects in an Internal State Variable (ISV) theory. Previous constitutive models did not include an interdependence between the internal magnetic (magnetostriction and magnetic flux) and mechanical fields. Although constitutive models explaining the mechanisms behind mechanical deformations caused by magnetization changes have been presented in the literature, they mainly focus on nanoscale structure-property relations. A fully coupled multiphysics macroscale ISV model presented herein admits lower length scale information from the nanoscale and microscale descriptions of the multiphysics behavior, thus capturing the effects of magnetic field forces with isotropic and anisotropic magnetization terms and moments under thermomechanical deformations. For the first time, this ISV modeling framework internally coheres to the kinematic, thermodynamic, and kinetic relationships of deformation using the evolving ISV histories. For the kinematics, a multiplicative decomposition of deformation gradient is employed including a magnetization term; hence, the Jacobian represents the conservation of mass and conservation of momentum including magnetism. The first and second laws of thermodynamics are used to constrain the appropriate constitutive relations through the Clausius-Duhem inequality. The kinetic framework employs a stress-strain relationship with a flow rule that couples the thermal, mechanical, and magnetic terms. Experimental data from the literature for three different materials (iron, nickel, and cobalt) are used to compare with the model's results showing good correlations.
我们提出了一种宏观本构模型,该模型在内部状态变量(ISV)理论中将磁性与热、弹性、塑性和损伤效应耦合在一起。以前的本构模型没有考虑内部磁场(磁致伸缩和磁通量)与机械场之间的相互依存关系。虽然文献中已经提出了解释由磁化变化引起的机械变形背后机制的本构模型,但它们主要关注纳米尺度的结构-性能关系。本文提出的一个完全耦合的多物理场宏观ISV模型允许从多物理场行为的纳米尺度和微观尺度描述中获取较低长度尺度的信息,从而在热机械变形下用各向同性和各向异性的磁化项及矩来捕捉磁场力的影响。首次,这个ISV建模框架利用不断演变的ISV历史在内部与变形的运动学、热力学和动力学关系保持一致。对于运动学,采用了包括磁化项的变形梯度的乘法分解;因此,雅可比行列式表示包括磁性在内的质量守恒和动量守恒。热力学第一和第二定律通过克劳修斯-杜亥姆不等式用于约束适当的本构关系。动力学框架采用了一种应力-应变关系以及一个耦合热、机械和磁项的流动法则。来自文献的三种不同材料(铁、镍和钴)的实验数据用于与模型结果进行比较,显示出良好的相关性。