Suppr超能文献

药用产品中抗氧化剂对肠道药物转运体的影响。

Effect of Antioxidants in Medicinal Products on Intestinal Drug Transporters.

作者信息

Kulkarni Chetan P, Yang Jia, Koleske Megan L, Lara Giovanni, Alam Khondoker, Raw Andre, Rege Bhagwant, Zhao Liang, Lu Dongmei, Zhang Lei, Yu Lawrence X, Lionberger Robert A, Giacomini Kathleen M, Kroetz Deanna L, Yee Sook Wah

机构信息

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA.

Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA.

出版信息

Pharmaceutics. 2024 May 10;16(5):647. doi: 10.3390/pharmaceutics16050647.

Abstract

The presence of mutagenic and carcinogenic N-nitrosamine impurities in medicinal products poses a safety risk. While incorporating antioxidants in formulations is a potential mitigation strategy, concerns arise regarding their interference with drug absorption by inhibiting intestinal drug transporters. Our study screened thirty antioxidants for inhibitory effects on key intestinal transporters-OATP2B1, P-gp, and BCRP in HEK-293 cells (OATP2B1) or membrane vesicles (P-gp, BCRP) using H-estrone sulfate, H-N-methyl quinidine, and H-CCK8 as substrates, respectively. The screen identified that butylated hydroxyanisole (BHA) and carnosic acid inhibited all three transporters (OATP2B1, P-gp, and BCRP), while ascorbyl palmitate (AP) inhibited OATP2B1 by more than 50%. BHA had IC values of 71 ± 20 µM, 206 ± 14 µM, and 182 ± 49 µM for OATP2B1, BCRP, and P-gp, respectively. AP exhibited IC values of 23 ± 10 µM for OATP2B1. The potency of AP and BHA was tested with valsartan, an OATP2B1 substrate, and revealed IC values of 26 ± 17 µM and 19 ± 11 µM, respectively, in HEK-293-OATP2B1 cells. Comparing IC values of AP and BHA with estimated intestinal concentrations suggests an unlikely inhibition of intestinal transporters at clinical concentrations of drugs formulated with antioxidants.

摘要

药品中诱变和致癌的N-亚硝胺杂质的存在会带来安全风险。虽然在制剂中加入抗氧化剂是一种潜在的缓解策略,但人们担心它们会通过抑制肠道药物转运体而干扰药物吸收。我们的研究筛选了30种抗氧化剂,分别以硫酸H-雌酮、H-N-甲基奎尼丁和H-CCK8为底物,在HEK-293细胞(OATP2B1)或膜囊泡(P-gp、BCRP)中检测其对关键肠道转运体OATP2B1、P-gp和BCRP的抑制作用。筛选结果表明,丁基羟基茴香醚(BHA)和肌醇六磷酸抑制所有三种转运体(OATP2B1、P-gp和BCRP),而棕榈酸抗坏血酸(AP)对OATP2B1的抑制率超过50%。BHA对OATP2B1、BCRP和P-gp的IC值分别为71±20µM、206±14µM和182±49µM。AP对OATP2B1的IC值为23±10µM。用OATP2B1底物缬沙坦测试了AP和BHA的效力,结果显示在HEK-293-OATP2B1细胞中的IC值分别为26±17µM和19±11µM。将AP和BHA的IC值与估计的肠道浓度进行比较表明,在含有抗氧化剂的药物临床浓度下,肠道转运体不太可能受到抑制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ada9/11124870/660eae5b9bb1/pharmaceutics-16-00647-g001.jpg

相似文献

1
Effect of Antioxidants in Medicinal Products on Intestinal Drug Transporters.
Pharmaceutics. 2024 May 10;16(5):647. doi: 10.3390/pharmaceutics16050647.
3
Identification of natural products as modulators of OATP2B1 using LC-MS/MS to quantify OATP-mediated uptake.
Pharm Biol. 2016;54(2):293-302. doi: 10.3109/13880209.2015.1034326. Epub 2015 Apr 10.
6
Major active components in grapefruit, orange, and apple juices responsible for OATP2B1-mediated drug interactions.
J Pharm Sci. 2013 Sep;102(9):3418-26. doi: 10.1002/jps.23653. Epub 2013 Jun 21.
7
Clinically Relevant OATP2B1 Inhibitors in Marketed Drug Space.
Mol Pharm. 2020 Feb 3;17(2):488-498. doi: 10.1021/acs.molpharmaceut.9b00897. Epub 2020 Jan 2.
8
Food Additives as Inhibitors of Intestinal Drug Transporter OATP2B1.
Mol Pharm. 2020 Oct 5;17(10):3748-3758. doi: 10.1021/acs.molpharmaceut.0c00507. Epub 2020 Sep 9.
9
Rhinacanthin-C Mediated Herb-Drug Interactions with Drug Transporters and Phase I Drug-Metabolizing Enzymes.
Drug Metab Dispos. 2019 Oct;47(10):1040-1049. doi: 10.1124/dmd.118.085647. Epub 2019 Aug 9.
10
Interaction of Hydroxychloroquine with Pharmacokinetically Important Drug Transporters.
Pharmaceutics. 2020 Sep 25;12(10):919. doi: 10.3390/pharmaceutics12100919.

引用本文的文献

1
Food Additives Inhibit Intestinal Drug Transporters but Have Limited Effect on In Vitro Drug Permeability.
Mol Pharm. 2025 Sep 1;22(9):5627-5637. doi: 10.1021/acs.molpharmaceut.5c00705. Epub 2025 Aug 7.

本文引用的文献

1
Bumetanide as a Model NDSRI Substrate: N-nitrosobumetanide Impurity Formation and its Inhibition in Bumetanide Tablets.
J Pharm Sci. 2023 Dec;112(12):3075-3087. doi: 10.1016/j.xphs.2023.06.013. Epub 2023 Jun 24.
3
N-nitrosamine Mitigation with Nitrite Scavengers in Oral Pharmaceutical Drug Products.
J Pharm Sci. 2023 Jul;112(7):1794-1800. doi: 10.1016/j.xphs.2023.03.022. Epub 2023 Apr 5.
4
N-Nitrosamine Formation in Pharmaceutical Solid Drug Products: Experimental Observations.
J Pharm Sci. 2023 May;112(5):1255-1267. doi: 10.1016/j.xphs.2023.01.027. Epub 2023 Feb 2.
5
The Impact of N-nitrosamine Impurities on Clinical Drug Development.
J Pharm Sci. 2023 May;112(5):1183-1191. doi: 10.1016/j.xphs.2023.01.017. Epub 2023 Jan 24.
6
Rapid Quantitation of Four Nitrosamine Impurities in Angiotensin Receptor Blocker Drug Substances.
J Pharm Sci. 2023 May;112(5):1246-1254. doi: 10.1016/j.xphs.2022.12.005. Epub 2022 Dec 9.
7
The Landscape of Potential Small and Drug Substance Related Nitrosamines in Pharmaceuticals.
J Pharm Sci. 2023 May;112(5):1287-1304. doi: 10.1016/j.xphs.2022.11.013. Epub 2022 Nov 17.
8
Approaches of formulation bridging in support of orally administered drug product development.
Int J Pharm. 2022 Dec 15;629:122380. doi: 10.1016/j.ijpharm.2022.122380. Epub 2022 Nov 9.
10
Drug metabolism and drug transport of the 100 most prescribed oral drugs.
Basic Clin Pharmacol Toxicol. 2022 Nov;131(5):311-324. doi: 10.1111/bcpt.13780. Epub 2022 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验