Rubilar-Hernández Carlos, Álvarez-Maldini Carolina, Pizarro Lorena, Figueroa Franco, Villalobos-González Luis, Pimentel Paula, Fiore Nicola, Pinto Manuel
Laboratorio de Inmunidad Vegetal, Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O'Higgins, San Fernando 3070000, Chile.
Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O'Higgins, San Fernando 3070000, Chile.
Plants (Basel). 2024 May 14;13(10):1361. doi: 10.3390/plants13101361.
Bacterial canker is an important disease of sweet cherry plants mainly caused by pv. (Pss). Water deficit profoundly impairs the yield of this crop. Nitric oxide (NO) is a molecule that plays an important role in the plant defense mechanisms. To evaluate the protection exerted by NO against Pss infection under normal or water-restricted conditions, sodium nitroprusside (SNP), a NO donor, was applied to sweet cherry plants cv. Lapins, before they were exposed to Pss infection under normal or water-restricted conditions throughout two seasons. Well-watered plants treated with exogenous NO presented a lower susceptibility to Pss. A lower susceptibility to Pss was also induced in plants by water stress and this effect was increased when water stress was accompanied by exogenous NO. The lower susceptibility to Pss induced either by exogenous NO or water stress was accompanied by a decrease in the internal bacterial population. In well-watered plants, exogenous NO increased the stomatal conductance and the net CO assimilation. In water-stressed plants, NO induced an increase in the leaf membranes stability and proline content, but not an increase in the CO assimilation or the stomatal conductance.
细菌性溃疡病是甜樱桃植株的一种重要病害,主要由丁香假单胞菌致病变种(Pss)引起。水分亏缺严重影响这种作物的产量。一氧化氮(NO)是一种在植物防御机制中起重要作用的分子。为了评估在正常或水分受限条件下NO对Pss感染的保护作用,在两个季节中,在甜樱桃品种拉宾斯植株暴露于正常或水分受限条件下的Pss感染之前,应用了NO供体硝普钠(SNP)。用外源NO处理的水分充足的植株对Pss的敏感性较低。水分胁迫也使植株对Pss的敏感性降低,当水分胁迫伴有外源NO时,这种效应增强。外源NO或水分胁迫诱导的对Pss较低的敏感性伴随着内部细菌种群数量的减少。在水分充足的植株中,外源NO增加了气孔导度和净CO同化。在水分胁迫的植株中,NO诱导叶片膜稳定性和脯氨酸含量增加,但CO同化或气孔导度没有增加。