合成细胞在 3D 微流控器件中的功能集成用于人工器官芯片技术。
Functional Integration of Synthetic Cells into 3D Microfluidic Devices for Artificial Organ-On-Chip Technologies.
机构信息
Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
出版信息
Adv Healthc Mater. 2024 Sep;13(22):e2303334. doi: 10.1002/adhm.202303334. Epub 2024 Jun 21.
Microfluidics plays a pivotal role in organ-on-chip technologies and in the study of synthetic cells, especially in the development and analysis of artificial cell models. However, approaches that use synthetic cells as integral functional components for microfluidic systems to shape the microenvironment of natural living cells cultured on-chip are not explored. Here, colloidosome-based synthetic cells are integrated into 3D microfluidic devices, pioneering the concept of synthetic cell-based microenvironments for organs-on-chip. Methods are devised to create dense and stable networks of silica colloidosomes, enveloped by supported lipid bilayers, within microfluidic channels. These networks promote receptor-ligand interactions with on-chip cultured cells. Furthermore, a technique is introduced for the controlled release of growth factors from the synthetic cells into the channels, using a calcium alginate-based hydrogel formation within the colloidosomes. To demonstrate the potential of the technology, a modular plug-and-play lymph-node-on-a-chip prototype that guides the expansion of primary human T cells by stimulating receptor ligands on the T cells and modulating their cytokine environment is presented. This integration of synthetic cells into microfluidic systems offers a new direction for organ-on-chip technologies and suggests further avenues for exploration in potential therapeutic applications.
微流控在器官芯片技术和合成细胞研究中起着关键作用,特别是在人工细胞模型的开发和分析方面。然而,利用合成细胞作为微流控系统的整体功能组件来塑造在芯片上培养的天然活细胞的微环境的方法尚未得到探索。在这里,基于胶体的合成细胞被整合到 3D 微流控设备中,开创了基于合成细胞的器官芯片微环境的概念。设计了方法来在微流道内创建密集且稳定的二氧化硅胶体囊泡网络,这些囊泡被支撑的脂质双层包围。这些网络促进了与芯片上培养的细胞的受体-配体相互作用。此外,还引入了一种技术,可在胶体囊中使用钙藻酸盐基水凝胶形成,将生长因子从合成细胞中受控释放到通道中。为了展示该技术的潜力,提出了一种模块化的即插即用的淋巴结在芯片原型,该原型通过刺激 T 细胞上的受体配体并调节其细胞因子环境来指导原代人 T 细胞的扩增。这种将合成细胞集成到微流控系统中的方法为器官芯片技术提供了一个新的方向,并为潜在的治疗应用探索提供了更多的途径。