Zhan Mengdi, Yuan Songyang, Wu Wenwen, Wang Mengqi, Yang Wenjian, Xiong Hui, Tan Ziyu, Li Wenzhe, Fan Jiandong
Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China.
Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
Small. 2024 Sep;20(38):e2402997. doi: 10.1002/smll.202402997. Epub 2024 May 25.
Despite CsPbIBr inorganic perovskites exhibit high potential for single-junction and/or tandem solar cells, unexpected non-radiative recombination, and mismatched interfacial band alignment within the inorganic perovskite solar cells (PSCs) disadvantageously affect their photovoltaic performance. Rational design of the dipole shielding layer (DSL) is vital to realize a win-win situation for the defect passivation and band alignment. Herein, A-site dipole molecules, that is, neopentylamine and 2-methylbutylamine, are employed for in-situ self-assembly of a thus-far unreported DSL at the interface between 3D perovskite and hole transport layer. The as-prepared DSL demonstrates a 2D RP phase perovskite and the lattice-matching structurally-stable DSL@3D perovskite enables to alleviate the unexpected surface defects and suppress the spontaneous non-radiative recombination by means of effectively tuning the surface work function via regulating the dipole moment length and Van der Waals gap. Accordingly, the top dipole-modified inorganic PSCs exhibit a champion power conversion efficiency (PSC) as high as 19.77% and a fill factor over 83%. Equally importantly, the corresponding solar cells demonstrate a remarkable enhanced stability, maintaining 90% of its initial efficiency for more than 1200 h without encapsulation under a 20% ± 5% relative humidity.
尽管CsPbIBr无机钙钛矿在单结和/或串联太阳能电池方面具有很高的潜力,但无机钙钛矿太阳能电池(PSC)中意外的非辐射复合以及不匹配的界面能带排列对其光伏性能产生了不利影响。合理设计偶极屏蔽层(DSL)对于实现缺陷钝化和能带排列的双赢局面至关重要。在此,A位偶极分子,即新戊胺和2-甲基丁胺,被用于在三维钙钛矿与空穴传输层之间的界面原位自组装一种迄今未报道的DSL。所制备的DSL呈现出二维RP相钙钛矿,且晶格匹配的结构稳定的DSL@三维钙钛矿能够通过调节偶极矩长度和范德华间隙有效调整表面功函数,从而减轻意外的表面缺陷并抑制自发的非辐射复合。因此,顶部偶极修饰的无机PSC表现出高达19.77%的最佳功率转换效率(PSC)和超过83%的填充因子。同样重要的是,相应的太阳能电池显示出显著增强的稳定性,在20%±5%的相对湿度下无需封装,在超过1200小时内保持其初始效率的90%。