Majumder Rajat, Sokolov Alexander Yu
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
J Chem Theory Comput. 2024 Jun 11;20(11):4676-4688. doi: 10.1021/acs.jctc.4c00458. Epub 2024 May 25.
We present a formulation and implementation of second-order quasidegenerate N-electron valence perturbation theory (QDNEVPT2) that provides a balanced and accurate description of spin-orbit coupling and dynamic correlation effects in multiconfigurational electronic states. In our approach, the energies and wave functions of electronic states are computed by treating electron repulsion and spin-orbit coupling operators as equal perturbations to the nonrelativistic complete active-space wave functions, and their contributions are incorporated fully up to the second order. The spin-orbit effects are described using the Breit-Pauli (BP) or exact two-component Douglas-Kroll-Hess (DKH) Hamiltonians within spin-orbit mean-field approximation. The resulting second-order methods (BP2- and DKH2-QDNEVPT2) are capable of treating spin-orbit coupling effects in nearly degenerate electronic states by diagonalizing an effective Hamiltonian expanded in a compact non-relativistic basis. For a variety of atoms and small molecules across the entire periodic table, we demonstrate that DKH2-QDNEVPT2 is competitive in accuracy with variational two-component relativistic theories. BP2-QDNEVPT2 shows high accuracy for the second- and third-period elements, but its performance deteriorates for heavier atoms and molecules. We also consider the first-order spin-orbit QDNEVPT2 approximations (BP1- and DKH1-QDNEVPT2), among which DKH1-QDNEVPT2 is reliable but less accurate than DKH2-QDNEVPT2. Both DKH1- and DKH2-QDNEVPT2 hold promise as efficient and accurate electronic structure methods for treating electron correlation and spin-orbit coupling in a variety of applications.
我们提出了二阶准简并N电子价态微扰理论(QDNEVPT2)的一种公式表述和实现方法,该理论能对多组态电子态中的自旋 - 轨道耦合和动态相关效应提供平衡且精确的描述。在我们的方法中,通过将电子排斥和自旋 - 轨道耦合算符视为对非相对论完全活性空间波函数的同等微扰来计算电子态的能量和波函数,并且它们的贡献被完全纳入到二阶。自旋 - 轨道效应在自旋 - 轨道平均场近似下使用Breit - Pauli(BP)或精确的二分量Douglas - Kroll - Hess(DKH)哈密顿量来描述。由此产生的二阶方法(BP2 - 和DKH2 - QDNEVPT2)能够通过对角化在紧凑的非相对论基中展开的有效哈密顿量来处理近简并电子态中的自旋 - 轨道耦合效应。对于整个周期表中的各种原子和小分子,我们证明DKH2 - QDNEVPT2在精度上与变分二分量相对论理论具有竞争力。BP2 - QDNEVPT2对第二和第三周期元素显示出高精度,但对于较重的原子和分子其性能会下降。我们还考虑了一阶自旋 - 轨道QDNEVPT2近似(BP1 - 和DKH1 - QDNEVPT2),其中DKH1 - QDNEVPT2是可靠的,但比DKH2 - QDNEVPT2精度低。DKH1 - 和DKH2 - QDNEVPT2都有望成为在各种应用中处理电子相关和自旋 - 轨道耦合的高效且精确的电子结构方法。