Zhang Qinglin, Zhang Jiayin, Zhu Wangjie, Lu Ruimin, Guo Chang
Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China.
Nat Commun. 2024 May 25;15(1):4477. doi: 10.1038/s41467-024-48936-4.
Precision control of stereochemistry in radical reactions remains a formidable challenge due to the prevalence of incidental racemic background reactions resulting from undirected substrate oxidation in the absence of chiral induction. In this study, we devised an thoughtful approach-electricity-driven asymmetric Lewis acid catalysis-to circumvent this impediment. This methodology facilitates both asymmetric dienylation and allylation reactions, resulting in the formation of all-carbon quaternary stereocenters and demonstrating significant potential in the modular synthesis of functional and chiral benzoxazole-oxazoline (Boox) ligands. Notably, the involvement of chiral Lewis acids in both the electrochemical activation and stereoselectivity-defining radical stages offers innovative departures for designing single electron transfer-based reactions, significantly underscoring the relevance of this approach as a multifaceted and universally applicable strategy for various fields of study, including electrosynthesis, organic chemistry, and drug discovery.
由于在手性诱导缺失的情况下,无定向底物氧化会导致偶然的外消旋背景反应普遍存在,因此自由基反应中立体化学的精确控制仍然是一项艰巨的挑战。在本研究中,我们设计了一种巧妙的方法——电驱动不对称路易斯酸催化——来克服这一障碍。该方法促进了不对称双烯化和烯丙基化反应,形成了全碳季立体中心,并在功能性和手性苯并恶唑-恶唑啉(Boox)配体的模块化合成中显示出巨大潜力。值得注意的是,手性路易斯酸参与电化学活化和定义立体选择性的自由基阶段,为设计基于单电子转移的反应提供了创新思路,显著突出了该方法作为一种多方面且普遍适用于包括电合成、有机化学和药物发现等各个研究领域的策略的相关性。