Suppr超能文献

基于耦合自适应ε约束和多策略优化的改进海象优化算法的混合水库调度优化研究

Research on hybrid reservoir scheduling optimization based on improved walrus optimization algorithm with coupling adaptive ε constraint and multi-strategy optimization.

作者信息

He Ji, Tang Yefeng, Guo Xiaoqi, Chen Haitao, Guo Wen

机构信息

College of Water Resources, Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.

出版信息

Sci Rep. 2024 May 25;14(1):11981. doi: 10.1038/s41598-024-62722-8.

Abstract

Reservoir flood control scheduling is a challenging optimization task, particularly due to the complexity of various constraints. This paper proposes an innovative algorithm design approach to address this challenge. Combining the basic walrus optimization algorithm with the adaptive ε-constraint method and introducing the SPM chaotic mapping for population initialization, spiral search strategy, and local enhancement search strategy based on Cauchy mutation and reverse learning significantly enhances the algorithm's optimization performance. On this basis, innovate an adaptive approach ε A New Algorithm for Constraints and Multi Strategy Optimization Improvement (ε-IWOA). To validate the performance of the ε-IWOA algorithm, 24 constrained optimization test functions are used to test its optimization capabilities and effectiveness in solving constrained optimization problems. Experimental results demonstrate that the ε-IWOA algorithm exhibits excellent optimization ability and stable performance. Taking the Taolinkou Reservoir, Daheiting Reservoir, and Panjiakou Reservoir in the middle and lower reaches of the Luanhe River Basin as a case study, this paper applies the ε-IWOA algorithm to practical reservoir scheduling problems by constructing a three-reservoir flood control scheduling system with Luanxian as the control point. A comparative analysis is conducted with the ε-WOA, ε-DE and ε-PSO (particle swarm optimization) algorithms.The experimental results indicate that ε-IWOA algorithm performs the best in optimization, with the occupied flood control capacity of the three reservoirs reaching 89.32%, 90.02%, and 80.95%, respectively. The control points in Luan County can reduce the peak by 49%.This provides a practical and effective solution method for reservoir optimization scheduling models. This study offers new ideas and solutions for flood control optimization scheduling of reservoir groups, contributing to the optimization and development of reservoir scheduling work.

摘要

水库防洪调度是一项具有挑战性的优化任务,尤其是由于各种约束条件的复杂性。本文提出了一种创新的算法设计方法来应对这一挑战。将基本的海象优化算法与自适应ε-约束方法相结合,并引入SPM混沌映射用于种群初始化、螺旋搜索策略以及基于柯西变异和反向学习的局部增强搜索策略,显著提高了算法的优化性能。在此基础上,创新一种自适应方法ε 一种用于约束和多策略优化改进的新算法(ε-IWOA)。为了验证ε-IWOA算法的性能,使用24个约束优化测试函数来测试其在解决约束优化问题方面的优化能力和有效性。实验结果表明,ε-IWOA算法具有出色的优化能力和稳定的性能。以滦河流域中下游的桃林口水库、大黑汀水库和潘家口水库为例,本文通过构建以滦县为控制点的三水库防洪调度系统,将ε-IWOA算法应用于实际水库调度问题。与ε-WOA、ε-DE和ε-PSO(粒子群优化)算法进行了对比分析。实验结果表明,ε-IWOA算法在优化方面表现最佳,三个水库的防洪库容占用率分别达到89.32%、90.02%和80.95%。滦县的控制点可使洪峰降低49%。这为水库优化调度模型提供了一种实用有效的求解方法。本研究为水库群防洪优化调度提供了新的思路和解决方案,有助于水库调度工作的优化和发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b001/11128023/a8e37da21b0d/41598_2024_62722_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验