Yu Guanyao, Wang Xueke, Lv Shuai, Wang Baolin, Wang Li, Zhang Jinglai
Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan 475004, PR China; Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China; Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, PR China.
Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan 475004, PR China; Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China; Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, PR China.
J Colloid Interface Sci. 2024 Oct;671:165-174. doi: 10.1016/j.jcis.2024.05.164. Epub 2024 May 23.
Electrochemical carbon dioxide reduction reaction (eCORR) to generate syngas is an appealing strategy for CO net reduction. However, it suffers from the inferior faradaic efficiency (FE), selectivity, and difficult modulation of hydrogen/carbon monoxide (H/CO) ratio. To address these issues, a series of magnesium-nickel (Mg-Ni) dual atomic catalysts with different Ni contents are fabricated on the nitrogen-doped carbon matrix (MgNi-NC DACs) by one-step pyrolysis. MgNi-NC electrocatalyst generates 0.51-0.79 H/CO ratios in a potential range of -0.6 to -1.0 V vs. reversible hydrogen electrode (RHE) and the total FE reaches 100 % with good stability. While a wider range of H/CO (0.95-4.34) is achieved for MgNi-NC electrocatalyst in the same overpotential range, which is suitable for typical downstream thermochemical reactions. Introduction of Ni species accelerates the generation of CO, however, there is much less influence on the H production as compared with Mg-based single atomic electrocatalyst. According to the experimental results and density functional theory (DFT) calculations, the synergistic effect between Mg and Ni achieves the satisfied results rather than each one fulfill its own duty for selective producing H and CO, respectively. This work introduces a feasible approach to develop atomic catalysts on main group metal for more controllable CORR.
通过电化学二氧化碳还原反应(eCORR)生成合成气是实现二氧化碳净减排的一种有吸引力的策略。然而,该反应存在法拉第效率(FE)较低、选择性差以及难以调节氢气/一氧化碳(H/CO)比例等问题。为了解决这些问题,通过一步热解在氮掺杂碳基质(MgNi-NC DACs)上制备了一系列具有不同镍含量的镁-镍(Mg-Ni)双原子催化剂。MgNi-NC电催化剂在相对于可逆氢电极(RHE)为-0.6至-1.0 V的电位范围内产生0.51-0.79的H/CO比例,总FE达到100%,且具有良好的稳定性。在相同的过电位范围内MgNi-NC电催化剂实现了更宽的H/CO比例范围(0.95-4.34),这适用于典型的下游热化学反应。镍物种的引入加速了CO的生成,然而,与镁基单原子电催化剂相比,对H生成的影响要小得多。根据实验结果和密度泛函理论(DFT)计算,Mg和Ni之间的协同效应取得了令人满意的结果,而不是各自分别选择性地生成H和CO。这项工作介绍了一种在主族金属上开发原子催化剂以实现更可控的二氧化碳还原反应的可行方法。