Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
Water Environ Res. 2024 May;96(6):e11038. doi: 10.1002/wer.11038.
The continuous population growth and drying up the freshwater reservoirs around the world are increasing the demand for fresh water. Therefore, there is an urgent need to explore newer technologies able to purify water on large scales for human usage. Capacitive deionization is one of the most promising approaches to generate fresh water by the removal of salt ions from brackish water. In this work, we prepared three different capacitive deionization electrodes using carbonized palm tree fronds (PFC). These PFC activation was achieved using CO at 900°C. To generate the deionization electrodes, PFC activated carbon was combined with either polyaniline (PANI), MnO, or both (PFC-PANI, PFC-MnO, and PFC-MnO-PANI). The MnO and PANI provided additional functionality and enhanced electrical conductivity, which resulted in much higher Na and Cl ions adsorption. The BET surface area of PFC-MnO-PANI was estimated to be 208.56 m/g, which is approximately three times that of PCF-PANI and PFC-MnO alone. The morphological analysis showed that the PANI and MnO nanorods were well dispersed throughout the PFC network. Although PANI and MnO is largely embedded inside the PFC network, some remnants are visible on the surface of the electrodes. The cyclic voltammetry (CV) curves showed capacitive behavior of all electrodes in which PFC-MnO-PANI showed highest specific capacitance of 84 F/g, while the PFC-MnO and PFC-PANI showed 42 and 43 F/g, respectively. Owing to its enhanced functionality and CV characteristics, the PFC-MnO-PANI showed maximum salt adsorption capacity of 10.5 mg/g in contrast to 3.72 and 5.64 mg/g for PFC-MnO and PFC-PANI, respectively. Moreover, the measured contact angle for PFC-MnO-PANI was ~51°, which indicates the hydrophilic nature of electrode that improved ions adsorption. PRACTITIONER POINTS: Date tree fronds were converted into mesopores carbon using CO as activation agent. Three composites were prepared with PANI, MnO, and date palm fronds activated carbon (PFC-MnO, PFC-MnO-PANI, and PFC-PANI). Surface area, pore profile, surface morphology, electrochemical behavior, desalination performance, and hydrophilicity of all the electrodes were investigated. The PFC-MnO-PANI showed maximum salt adsorption capacity of 10.5 mg/g in contrast to 3.72 and 5.64 mg/g for PFC-MnO and PFC-PANI, respectively.
世界范围内的人口持续增长和淡水资源的枯竭正在增加对淡水的需求。因此,迫切需要探索能够大规模净化水以供人类使用的新技术。电容去离子化是从咸水中去除盐离子以产生淡水的最有前途的方法之一。在这项工作中,我们使用碳化棕榈树叶片(PFC)制备了三种不同的电容去离子电极。这些 PFC 的活化是在 900°C 下用 CO 实现的。为了生成去离子电极,将 PFC 活性炭与聚苯胺(PANI)、MnO 或两者(PFC-PANI、PFC-MnO 和 PFC-MnO-PANI)结合使用。MnO 和 PANI 提供了额外的功能和增强的导电性,从而导致 Na 和 Cl 离子的吸附率大大提高。PFC-MnO-PANI 的 BET 表面积估计为 208.56 m2/g,约为 PFC-PANI 和 PFC-MnO 单独的三倍。形态分析表明,PANI 和 MnO 纳米棒均匀分散在 PFC 网络中。尽管 PANI 和 MnO 大部分嵌入在 PFC 网络中,但在电极表面仍能看到一些残留物。循环伏安(CV)曲线显示所有电极均表现出电容行为,其中 PFC-MnO-PANI 的比电容最高,为 84 F/g,而 PFC-MnO 和 PFC-PANI 的比电容分别为 42 和 43 F/g。由于其增强的功能和 CV 特性,PFC-MnO-PANI 的最大盐吸附容量为 10.5 mg/g,而 PFC-MnO 和 PFC-PANI 的最大盐吸附容量分别为 3.72 和 5.64 mg/g。此外,PFC-MnO-PANI 的测量接触角约为 51°,表明电极具有亲水性,可提高离子吸附性能。实践者要点:使用 CO 作为活化剂将椰枣叶片转化为介孔碳。制备了三种复合材料,分别为 PANI、MnO 和椰枣叶片活性炭(PFC-MnO、PFC-MnO-PANI 和 PFC-PANI)。研究了所有电极的表面积、孔隙分布、表面形貌、电化学行为、脱盐性能和润湿性。与 PFC-MnO 和 PFC-PANI 相比,PFC-MnO-PANI 的最大盐吸附容量为 10.5 mg/g,而 PFC-MnO 和 PFC-PANI 的最大盐吸附容量分别为 3.72 和 5.64 mg/g。