Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA.
Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA.
Genetics. 2024 Jul 8;227(3). doi: 10.1093/genetics/iyae063.
The major loci for the large primary ribosomal RNA (rRNA) genes (35S rRNAs) exist as hundreds to thousands of tandem repeats in all organisms and dozens to hundreds in Drosophila. The highly repetitive nature of the ribosomal DNA (rDNA) makes it intrinsically unstable, and many conditions arise from the reduction in or magnification of copy number, but the conditions under which it does so remain unknown. By targeted DNA damage to the rDNA of the Y chromosome, we created and investigated a series of rDNA alleles. We found that complete loss of rDNA leads to lethality after the completion of embryogenesis, blocking larval molting and metamorphosis. We find that the resident retrotransposons-R1 and R2-are regulated by active rDNA such that reduction in copy number derepresses these elements. Their expression is highest during the early first instar, when loss of rDNA is lethal. Regulation of R1 and R2 may be related to their structural arrangement within the rDNA, as we find they are clustered in the flanks of the nucleolus organizing region (NOR; the cytological appearance of the rDNA). We assessed the complex nucleolar dominance relationship between X- and Y-linked rDNA using a histone H3.3-GFP reporter construct and incorporation at the NOR and found that dominance is controlled by rDNA copy number as at high multiplicity the Y-linked array is dominant, but at low multiplicity the X-linked array becomes derepressed. Finally, we found that multiple conditions that disrupt nucleolar dominance lead to increased rDNA magnification, suggesting that the phenomena of dominance and magnification are related, and a single mechanism may underlie and unify these two longstanding observations in Drosophila.
主要的核糖体 RNA(rRNA)基因(35S rRNA)位于所有生物中的数百到数千个串联重复,以及果蝇中的数十到数百个串联重复。核糖体 DNA(rDNA)的高度重复性质使其内在不稳定,许多情况源于拷贝数的减少或放大,但导致这种情况的条件仍不清楚。通过靶向 Y 染色体 rDNA 的 DNA 损伤,我们创建并研究了一系列 rDNA 等位基因。我们发现 rDNA 的完全缺失会在胚胎发生完成后导致致死性,阻止幼虫蜕皮和变态。我们发现,驻留的反转录转座子 R1 和 R2 受到活性 rDNA 的调节,因此拷贝数的减少会解除这些元件的抑制。它们的表达在早期第一龄期最高,此时 rDNA 的缺失是致命的。R1 和 R2 的表达可能与其在 rDNA 内的结构排列有关,因为我们发现它们在核仁组织区(NOR)的侧翼聚集;NOR 是 rDNA 的细胞学外观。我们使用组蛋白 H3.3-GFP 报告基因构建体和 NOR 处的掺入来评估 X 和 Y 连锁 rDNA 之间复杂的核仁优势关系,并发现优势由 rDNA 拷贝数控制,因为在高倍数时,Y 连锁阵列占主导地位,但在低倍数时,X 连锁阵列被解除抑制。最后,我们发现破坏核仁优势的多种条件会导致 rDNA 放大增加,这表明优势和放大现象是相关的,单一机制可能是果蝇中这两个长期观察结果的基础和统一。