Olotu Fisayo, Tali Mariscal Brice Tchatat, Chepsiror Curtis, Sheik Amamuddy Olivier, Boyom Fabrice Fekam, Tastan Bishop Özlem
Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, 6139, South Africa.
Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry & Medicinal Plants Studies, Department of Biochemistry, Faculty of Science-University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon; Advanced Research and Health Innovation Hub (ARHIH), Magzi Street, P.O. Box 812, Yaounde, Cameroon.
Int J Parasitol Drugs Drug Resist. 2024 Aug;25:100548. doi: 10.1016/j.ijpddr.2024.100548. Epub 2024 May 20.
Plasmodium falciparum aminoacyl tRNA synthetases (PfaaRSs) are potent antimalarial targets essential for proteome fidelity and overall parasite survival in every stage of the parasite's life cycle. So far, some of these proteins have been singly targeted yielding inhibitor compounds that have been limited by incidences of resistance which can be overcome via pan-inhibition strategies. Hence, herein, for the first time, we report the identification and in vitro antiplasmodial validation of Mitomycin (MMC) as a probable pan-inhibitor of class 1a (arginyl(A)-, cysteinyl(C), isoleucyl(I)-, leucyl(L), methionyl(M), and valyl(V)-) PfaaRSs which hypothetically may underlie its previously reported activity on the ribosomal RNA to inhibit protein translation and biosynthesis. We combined multiple in silico structure-based discovery strategies that first helped identify functional and druggable sites that were preferentially targeted by the compound in each of the plasmodial proteins: Ins1-Ins2 domain in Pf-ARS; anticodon binding domain in Pf-CRS; CP1-editing domain in Pf-IRS and Pf-MRS; C-terminal domain in Pf-LRS; and CP-core region in Pf-VRS. Molecular dynamics studies further revealed that MMC allosterically induced changes in the global structures of each protein. Likewise, prominent structural perturbations were caused by the compound across the functional domains of the proteins. More so, MMC induced systematic alterations in the binding of the catalytic nucleotide and amino acid substrates which culminated in the loss of key interactions with key active site residues and ultimate reduction in the nucleotide-binding affinities across all proteins, as deduced from the binding energy calculations. These altogether confirmed that MMC uniformly disrupted the structure of the target proteins and essential substrates. Further, MMC demonstrated IC < 5 μM against the Dd2 and 3D7 strains of parasite making it a good starting point for malarial drug development. We believe that findings from our study will be important in the current search for highly effective multi-stage antimalarial drugs.
恶性疟原虫氨酰基-tRNA合成酶(PfaaRSs)是强大的抗疟靶点,对于疟原虫生命周期各阶段的蛋白质组保真度和寄生虫整体存活至关重要。到目前为止,这些蛋白质中的一些已被单独靶向,产生的抑制剂化合物受到耐药性的限制,而通过泛抑制策略可以克服这种耐药性。因此,在本文中,我们首次报告了丝裂霉素(MMC)作为1a类(精氨酰(A)-、半胱氨酰(C)、异亮氨酰(I)-、亮氨酰(L)、甲硫氨酰(M)和缬氨酰(V)-)PfaaRSs的可能泛抑制剂的鉴定及其体外抗疟验证,推测这可能是其先前报道的对核糖体RNA抑制蛋白质翻译和生物合成活性的基础。我们结合了多种基于计算机模拟结构的发现策略,这些策略首先有助于确定该化合物在每种疟原虫蛋白质中优先靶向的功能和可成药位点:Pf-ARS中的Ins1-Ins2结构域;Pf-CRS中的反密码子结合结构域;Pf-IRS和Pf-MRS中的CP1编辑结构域;Pf-LRS中的C末端结构域;以及Pf-VRS中的CP核心区域。分子动力学研究进一步表明,MMC通过变构诱导每种蛋白质整体结构的变化。同样,该化合物在蛋白质的功能结构域中引起了显著的结构扰动。此外,MMC诱导催化核苷酸和氨基酸底物结合的系统性改变,最终导致与关键活性位点残基的关键相互作用丧失,并且根据结合能计算推断,所有蛋白质的核苷酸结合亲和力最终降低。这些共同证实了MMC一致地破坏了靶蛋白和必需底物的结构。此外,MMC对疟原虫的Dd2和3D7菌株显示出IC<5μM,使其成为疟疾药物开发的一个良好起点。我们相信,我们的研究结果对于当前寻找高效多阶段抗疟药物将具有重要意义。