Suppr超能文献

津特耳概念在理解富锂锗化物和锡化物晶体化学中的适用性。

Applicability of the Zintl Concept to Understanding the Crystal Chemistry of Lithium-Rich Germanides and Stannides.

作者信息

Ghosh Kowsik, Rahman Salina, Ovchinnikov Alexander, Bobev Svilen

机构信息

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.

Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.

出版信息

Inorg Chem. 2024 Oct 28;63(43):20173-20185. doi: 10.1021/acs.inorgchem.4c01064. Epub 2024 May 29.

Abstract

With this contribution, we take a new, critical look at the structures of the binary phases LiGe and LiSn. Both are isostructural (centrosymmetric space group 3̅, no. 166), and in their structures, all germanium (tin) atoms are dimerized. Application of the valence rules will require the allocation of six additional valence electrons per [Ge] or [Sn] unit considering single covalent bonds, akin to those in the dihalogen molecules. Alternatively, four additional valence electrons per [Ge] or [Sn] anion will be needed if homoatomic double bonds exist, in an analogy with dioxygen. Therefore, five lithium atoms in one formula unit cannot provide the exact number of electrons, leaving open questions as to what is the nature of the chemical bonding within these moieties. Additionally, by means of single-crystal X-ray diffraction, synchrotron powder X-ray diffraction, and neutron powder diffraction, we established that the Li and Sn atoms in LiSn are partially disordered, i.e., the actual chemical formula of this compound is LiSn (0 < < 0.1). The convoluted atomic bonding in the case where tin atoms partially displace lithium atoms results in the formation of larger covalently bonded fragments. Our first-principle calculations suggest that such disorder leads to electron doping. Contrary to that, both experimental and computational findings indicate that in the LiGe structure, the [Ge] dimers are slightly oxidized, i.e., hole-doped, as a result of approximately 30% vacancies on a Li site, i.e., the actual chemical formula of this compound is LiGe ( ≈ 0.3).

摘要

通过这项研究,我们对二元相LiGe和LiSn的结构进行了全新的批判性审视。二者具有相同的结构(中心对称空间群3̅,编号166),且在其结构中,所有锗(锡)原子都形成了二聚体。若考虑单共价键,应用价键规则时每个[Ge]或[Sn]单元需要额外分配六个价电子,这类似于二卤分子中的情况。或者,如果存在同原子双键,类似于双氧分子,每个[Ge]或[Sn]阴离子将需要四个额外的价电子。因此,一个化学式单元中的五个锂原子无法提供精确数量的电子,这使得这些部分内化学键的本质存在疑问。此外,通过单晶X射线衍射、同步辐射粉末X射线衍射和中子粉末衍射,我们确定LiSn中的Li和Sn原子存在部分无序,即该化合物的实际化学式为LiSn (0 < < 0.1)。在锡原子部分取代锂原子的情况下,复杂的原子键合导致形成更大的共价键片段。我们的第一性原理计算表明,这种无序会导致电子掺杂。与此相反,实验和计算结果均表明,在LiGe结构中,由于锂位点上约30%的空位,[Ge]二聚体被轻微氧化,即发生空穴掺杂,即该化合物的实际化学式为LiGe ( ≈ 0.3)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验