Suppr超能文献

光电化学体系中阴极电子-氧-质子偶联的整合活性位点有利于 HO 生成。

Integrative Active Sites of Cathode for Electron-Oxygen-Proton Coupling To Favor HO Production in a Photoelectrochemical System.

机构信息

Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.

出版信息

Environ Sci Technol. 2024 Jun 11;58(23):10072-10083. doi: 10.1021/acs.est.4c01601. Epub 2024 May 29.

Abstract

The oxygen reduction process generating HO in the photoelectrochemical (PEC) system is milder and environmentally friendly compared with the traditional anthraquinone process but still lacks the efficient electron-oxygen-proton coupling interfaces to improve HO production efficiency. Here, we propose an integrated active site strategy, that is, designing a hydrophobic C-B-N interface to refine the dearth of electron, oxygen, and proton balance. Computational calculation results show a lower energy barrier for HO production due to synergistic and coupling effects of boron sites for O adsorption, nitrogen sites for H binding, and the carbon structure for electron transfer, demonstrating theoretically the feasibility of the strategy. Furthermore, we construct a hydrophobic boron- and nitrogen-doped carbon black gas diffusion cathode (BN-CB-PTFE) with graphite carbon dots decorated on a BiVO photoanode (BVO/g-CDs) for HO production. Remarkably, this approach achieves a record HO production rate (9.24 μmol min cm) at the PEC cathode. The BN-CB-PTFE cathode exhibits an outstanding Faraday efficiency for HO production of ∼100%. The newly formed -BN integrative active site can not only adsorb more O but also significantly improve the electron and proton transfer. Unexpectedly, coupling BVO/g-CDs with the BN-CB-PTFE gas diffusion cathode also achieves a record HO production rate (6.60 μmol min cm) at the PEC photoanode. This study opens new insight into integrative active sites for electron-O-proton coupling in a PEC HO production system that may be meaningful for environment and energy applications.

摘要

光电化学(PEC)系统中产生 HO 的氧还原过程比传统蒽醌过程更温和、环保,但仍缺乏高效的电子-氧-质子偶联界面来提高 HO 生成效率。在这里,我们提出了一种集成的活性位点策略,即设计疏水电荷-硼-氮(C-B-N)界面来优化电子、氧和质子的平衡。计算结果表明,由于硼位点对 O 吸附、氮位点对 H 结合以及碳结构对电子转移的协同和耦合作用,HO 生成的能量势垒更低,从理论上证明了该策略的可行性。此外,我们在 BiVO 光阳极(BVO/g-CDs)上构建了具有石墨碳点修饰的疏水电荷-硼和氮掺杂碳黑气体扩散阴极(BN-CB-PTFE)用于 HO 生成。值得注意的是,该方法在 PEC 阴极上实现了创纪录的 HO 生成速率(9.24 μmol min cm)。BN-CB-PTFE 阴极对 HO 生成的法拉第效率高达约 100%。新形成的-BN 集成活性位点不仅可以吸附更多的 O,还可以显著提高电子和质子的转移。出乎意料的是,将 BVO/g-CDs 与 BN-CB-PTFE 气体扩散阴极耦合也在 PEC 光阳极上实现了创纪录的 HO 生成速率(6.60 μmol min cm)。本研究为 PEC HO 生成系统中的电子-O-质子偶联提供了新的见解,这对于环境和能源应用可能具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验