Rattanakosin College for Sustainable Energy and Environment, Rajamangala University of Technology Rattanakosin, Nakhon Pathom, 73170, Thailand; Microbial Informatics and Industrial Product of Microbe Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand.
Microbial Informatics and Industrial Product of Microbe Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand; Department of Agro-Industrial, Food and Environmental Technology, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand.
Environ Res. 2024 Sep 1;256:119230. doi: 10.1016/j.envres.2024.119230. Epub 2024 May 27.
The conversion of carbon dioxide (CO) to methane (CH) is a strategy for sequestering CO. Zero-valent iron (ZVI) has been proposed as an alternative electron donor for the CO reduction to CH. In this study, the effects of ZVI concentrations on the abiotic production of H (without the action of microorganisms) in the first part and on the biological conversion of CO to CH using ZVI as a direct electron donor in the second part were examined. In the abiotic H production, the increase in the ZVI concentration from 16 to 32, 64, and 96 g/L was found to have positive effects on both the amounts of H generated and the rates of H production because the extent of ZVI oxidation positively correlates with increasing surface area. Nevertheless, the increase in ZVI concentration from 96 to 224 g/L did not benefit the H production because the ZVI dissolution was suppressed by the increasing aqueous pH above 10. In the bioconversion of CO to CH using ZVI as an electron donor, the main methanogenesis pathway occurred via hydrogenotrophic methanogenesis at pH 8.7-9.5 driven by the genus Methanobacterium of the class Methanobacteria. At ZVI concentrations of 64 g/L and above, the production of volatile fatty acid (VFA) became clear. Acetate was the main VFA, indicating the induction of homoacetogenesis at ZVI concentrations of 64 g/L and above. In addition, the presence of propionate as the second major VFA suggests the production of propionate from CO and acetate under conditions with high H partial pressure. The results indicated that the pathway for ZVI/CO conversion to CH was competitive between hydrogenotrophic methanogenesis and homoacetogenesis.
二氧化碳(CO)到甲烷(CH)的转化是一种封存 CO 的策略。零价铁(ZVI)已被提议作为 CO 还原为 CH 的替代电子供体。在这项研究中,考察了 ZVI 浓度对第一部分中无微生物作用下 H 的生物生成(abiotic production of H)的影响,以及对第二部分中 ZVI 作为直接电子供体将 CO 生物转化为 CH 的影响。在无生物 H 生成中,发现 ZVI 浓度从 16 增加到 32、64 和 96 g/L 对生成的 H 量和 H 生成速率都有积极影响,因为 ZVI 氧化的程度与表面积的增加呈正相关。然而,当 ZVI 浓度从 96 增加到 224 g/L 时,H 的生成并没有受益,因为增加的水溶液 pH 值(高于 10)抑制了 ZVI 的溶解。在使用 ZVI 作为电子供体将 CO 生物转化为 CH 的过程中,主要的产甲烷途径是在 pH 8.7-9.5 下由 Methanobacterium 属的产甲烷菌通过氢营养型产甲烷作用发生的。在 ZVI 浓度为 64 g/L 及以上时,挥发性脂肪酸(VFA)的生成变得明显。乙酸盐是主要的 VFA,表明在 ZVI 浓度为 64 g/L 及以上时诱导了同型产乙酸作用。此外,丙酸作为第二大 VFA 的存在表明在高 H 分压条件下,CO 和乙酸盐可生成丙酸。结果表明,ZVI/CO 转化为 CH 的途径在氢营养型产甲烷作用和同型产乙酸作用之间存在竞争。