Center for Integrative Genomics, University of Lausanne, Genopode Building, Lausanne, CH, 1015, Switzerland.
Present address: Institute of Medical Genetics, University of Zurich, Zurich, Switzerland.
Genome Med. 2024 May 30;16(1):72. doi: 10.1186/s13073-024-01339-y.
We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney, caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative mode of action, wherein an increased level of AFF3 resulted in pathological effects.
Evolutionary constraints suggest that other modes-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be damaging variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants.
We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous Loss-of-Function (LoF) or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not rescue these phenotypes. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring + / + , KINSSHIP/KINSSHIP, LoF/ + , LoF/LoF or KINSSHIP/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the KINSSHIP/KINSSHIP or the LoF/LoF lines. While the same pathways are affected, only about one third of the differentially expressed genes are common to the homozygote datasets, indicating that AFF3 LoF and KINSSHIP variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation.
Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.
我们之前描述了 KINSSHIP 综合征,这是一种常染色体显性遗传疾病,与智力障碍(ID)、中胚层发育不良和马蹄肾有关,由 AFF3 结构域的新生变异引起。鼠敲入和斑马鱼过表达提供了证据表明存在显性负作用模式,其中 AFF3 水平升高会导致病理性效应。
进化约束表明,可能存在其他遗传模式。我们通过筛选 ID 队列中预测具有 AFF3 有害变异的个体来挑战这一假设。我们使用动物和细胞模型来评估鉴定出的变异的有害性。
我们鉴定了一个具有 KINSSHIP 样表型的个体,携带 AFF3 的新生部分重复,进一步加强了 AFF3 水平升高是病理性的假设。我们还检测到 17 名个体表现出较轻的综合征,其 AFF3 存在杂合性失活(LoF)或双等位基因错义变异。与半显性一致,我们发现 3 名患者为纯合性 LoF,1 名患者为 LoF 和错义变异的复合杂合子,其表型比杂合子父母更严重。匹配的斑马鱼敲低显示出神经缺陷,可通过表达人 AFF3 mRNA 来挽救,证实了它们与 aff3 缺失的关联。相反,一些在受影响个体中发现的携带错义变异的人 AFF3 mRNA 不能挽救这些表型。与野生型相比,斑马鱼胚胎中突变 AFF3 mRNA 的过表达导致异常幼虫数量显著增加,进一步证明了其有害性。为了进一步评估 AFF3 变异的影响,我们对受影响个体的成纤维细胞进行了转录组分析,并构建了携带 + / + 、KINSSHIP/KINSSHIP、LoF/ + 、LoF/LoF 或 KINSSHIP/LoF AFF3 基因型的同基因细胞。在 KINSSHIP/KINSSHIP 或 LoF/LoF 系中,超过三分之一的 AFF3 结合基因座的表达发生改变。虽然受影响的途径相同,但只有大约三分之一的差异表达基因在同基因数据集之间是共同的,表明 AFF3 LoF 和 KINSSHIP 变异主要以不同的方式调节转录组,例如 DNA 修复途径显示出相反的调节。
我们的结果和该基因座的高表型多效性表明,AFF3 功能的微小变化是有害的。