Suppr超能文献

利用系统误差评估软件提高系统发育准确性。

Utilization of systematic error-assessment software to improve phylogenetic accuracy.

作者信息

Kim Hayeon, Lee Junghwan, Je Mikyeong, Cho Myeongji, Son Hyeon S

机构信息

Laboratory of Computational Biology & Bioinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

Public Health AI Laboratory, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

出版信息

J Bioinform Comput Biol. 2024 Apr;22(2):2450008. doi: 10.1142/S0219720024500082. Epub 2024 May 28.

Abstract

Unlike classical systems based on the use of morphological data, modern phylogenetic analyses use genetic information to construct phylogenetic trees. Ongoing research in the field of phylogenetics is evaluating the accuracy of phylogenetic estimation results and the reliability of phylogenetic trees to explain evolutionary relationships. Recently, the probability of stochastic errors in large-scale phylogenetic datasets has decreased, while the probability of systematic errors has increased. Therefore, before constructing a phylogenetic tree, it is necessary to assess the causes of systematic bias to improve the accuracy of phylogenetic estimates. We performed analyses of three datasets (Terebelliformia, Daphniid, and Glires clades) using bioinformatics software to assess systematic error and improve phylogenetic tree accuracy. Then, we proposed a combination of systematic biases capable of discerning the most suitable gene markers within a series of taxa and generating conflicting phylogenetic topologies. Our findings will help improve the reliability of phylogenetic software to estimate phylogenies more accurately by exploiting systematic bias.

摘要

与基于形态学数据使用的经典系统不同,现代系统发育分析利用遗传信息构建系统发育树。系统发育学领域正在进行的研究正在评估系统发育估计结果的准确性以及系统发育树解释进化关系的可靠性。最近,大规模系统发育数据集中随机误差的概率降低了,而系统误差的概率增加了。因此,在构建系统发育树之前,有必要评估系统偏差的原因,以提高系统发育估计的准确性。我们使用生物信息学软件对三个数据集(缨鳃虫类、水蚤类和啮齿动物与兔形目分支)进行了分析,以评估系统误差并提高系统发育树的准确性。然后,我们提出了一种系统偏差的组合,能够在一系列分类群中识别最合适的基因标记,并生成相互冲突的系统发育拓扑结构。我们的研究结果将有助于通过利用系统偏差提高系统发育软件更准确估计系统发育的可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验