Suppr超能文献

通过活性炭去除药物污染物的吸附机制和相互作用的深入研究:物理化学分析。

In-depth study of adsorption mechanisms and interactions in the removal of pharmaceutical contaminants via activated carbon: a physicochemical analysis.

机构信息

Laboratory of Quantum and Statistical Physics, Faculty of Sciences of Monastir, LR18ES18, Monastir University, Monastir, Tunisia.

CRMN, Centre for Research On Microelectronics and Nanotechnology of Sousse, NANOMISENE, LR16CRMN01, Code Postal 4054, Sousse, Tunisia.

出版信息

Environ Sci Pollut Res Int. 2024 Jun;31(27):39208-39216. doi: 10.1007/s11356-024-33806-9. Epub 2024 May 30.

Abstract

This study presents a theoretical analysis of the adsorption process of pharmaceutical pollutants, specifically acetaminophen (ATP) and diclofenac (DFC), onto activated carbon (AC) derived from avocado biomass waste. The adsorption isotherms of ATP and DFC were analyzed using a multilayer model, which revealed the formation of two to four adsorption layers depending on the temperature of the aqueous solution. The saturation adsorption capacities for ATP and DFC were 52.71 and 116.53 mg/g, respectively. A steric analysis suggested that the adsorption mechanisms of ATP and DFC involved a multi-molecular process. The calculated adsorption energies (ΔE and ΔE) varied between 12.86 and 22.58 kJ/mol, with the highest values observed for DFC removal. Therefore, the adsorption of these organic molecules was associated with physisorption interactions: van der Waals forces and hydrogen bonds. These findings enhance the understanding of the depollution processes of pharmaceutical compounds using carbon-based adsorbents and highlight the potential of utilizing waste biomass for environmental remediation.

摘要

本研究对从鳄梨生物质废物制备的活性炭(AC)上吸附药物污染物(如对乙酰氨基酚(ATP)和双氯芬酸(DFC))的吸附过程进行了理论分析。利用多层模型分析了 ATP 和 DFC 的吸附等温线,结果表明,根据水溶液的温度,可形成两到四层吸附层。ATP 和 DFC 的饱和吸附容量分别为 52.71 和 116.53 mg/g。位阻分析表明,ATP 和 DFC 的吸附机制涉及多分子过程。计算得到的吸附能(ΔE 和 ΔE)在 12.86 到 22.58 kJ/mol 之间变化,其中 DFC 的去除值最高。因此,这些有机分子的吸附与物理吸附相互作用有关:范德华力和氢键。这些发现提高了对利用基于碳的吸附剂去除药物化合物的污染过程的理解,并强调了利用废物生物质进行环境修复的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验