Ranganathan Meghana, Minchew Brent
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge 02139, MA.
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta 30332, GA.
Proc Natl Acad Sci U S A. 2024 Jun 4;121(23):e2309788121. doi: 10.1073/pnas.2309788121. Epub 2024 May 30.
Glacier flow modulates sea level and is governed largely by the viscous deformation of ice. Multiple molecular-scale mechanisms facilitate viscous deformation, but it remains unclear how each contributes to glacier-scale deformation. Here, we present a model of ice deformation that bridges laboratory and glacier scales, unifies existing estimates of the viscous parameters, and provides a framework for estimating the parameters from observations and incorporating flow laws derived from laboratory observations into glacier-flow models. Our results yield a map of the dominant deformation mechanisms in the Antarctic Ice Sheet, showing that, contrary to long-standing assumptions, dislocation creep, characterized by a value of the stress exponent [Formula: see text], likely dominates in all fast-flowing areas. This increase from the canonical value of [Formula: see text] dramatically alters the climate conditions under which marine ice sheets may become unstable and drive rapid rates of sea-level rise.
冰川流动调节海平面,并且在很大程度上受冰的粘性变形控制。多种分子尺度机制促进粘性变形,但每种机制如何对冰川尺度变形产生影响仍不清楚。在此,我们提出了一个冰变形模型,该模型连接了实验室尺度和冰川尺度,统一了粘性参数的现有估计,并提供了一个从观测中估计参数以及将源自实验室观测的流动定律纳入冰川流动模型的框架。我们的结果给出了南极冰盖主要变形机制的地图,表明与长期以来的假设相反,以应力指数[公式:见正文]值为特征的位错蠕变可能在所有快速流动区域占主导。从[公式:见正文]的标准值增加这一点极大地改变了海洋冰盖可能变得不稳定并推动海平面快速上升的气候条件。