Suppr超能文献

利用 PhyloAcc 识别快速进化的非编码基因组元件的实用指南和工作流程。

Practical Guidance and Workflows for Identifying Fast Evolving Non-Coding Genomic Elements Using PhyloAcc.

机构信息

Informatics Group, Harvard University, Cambridge, MA 02138, USA.

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Integr Comp Biol. 2024 Nov 21;64(5):1513-1525. doi: 10.1093/icb/icae056.

Abstract

Comparative genomics provides ample ways to study genome evolution and its relationship to phenotypic traits. By developing and testing alternate models of evolution throughout a phylogeny, one can estimate rates of molecular evolution along different lineages in a phylogeny and link these rates with observations in extant species, such as convergent phenotypes. Pipelines for such work can help identify when and where genomic changes may be associated with, or possibly influence, phenotypic traits. We recently developed a set of models called PhyloAcc, using a Bayesian framework to estimate rates of nucleotide substitution on different branches of a phylogenetic tree and evaluate their association with pre-defined or estimated phenotypic traits. PhyloAcc-ST and PhyloAcc-GT both allow users to define a priori a set of target lineages and then compare different models to identify loci accelerating in one or more target lineages. Whereas ST considers only one species tree across all input loci, GT considers alternate topologies for every locus. PhyloAcc-C simultaneously models molecular rates and rates of continuous trait evolution, allowing the user to ask whether the two are associated. Here, we describe these models and provide tips and workflows on how to prepare the input data and run PhyloAcc.

摘要

比较基因组学为研究基因组进化及其与表型特征的关系提供了丰富的方法。通过在系统发育中开发和测试进化的替代模型,可以估计系统发育中不同谱系的分子进化率,并将这些速率与现存物种的观察结果(如趋同表型)联系起来。此类工作的管道可以帮助确定何时以及何处的基因组变化可能与表型特征相关,或者可能影响表型特征。我们最近开发了一组称为 PhyloAcc 的模型,使用贝叶斯框架来估计系统发育树上不同分支的核苷酸替换率,并评估它们与预定义或估计的表型特征的关联。PhyloAcc-ST 和 PhyloAcc-GT 都允许用户先验定义一组目标谱系,然后比较不同的模型来识别在一个或多个目标谱系中加速的基因座。而 ST 仅考虑所有输入基因座的一个物种树,GT 则为每个基因座考虑替代拓扑结构。PhyloAcc-C 同时对分子速率和连续性状进化速率进行建模,允许用户询问这两者是否相关。在这里,我们描述了这些模型,并提供了有关如何准备输入数据和运行 PhyloAcc 的提示和工作流程。

相似文献

1
Practical Guidance and Workflows for Identifying Fast Evolving Non-Coding Genomic Elements Using PhyloAcc.
Integr Comp Biol. 2024 Nov 21;64(5):1513-1525. doi: 10.1093/icb/icae056.
3
Bayesian Detection of Convergent Rate Changes of Conserved Noncoding Elements on Phylogenetic Trees.
Mol Biol Evol. 2019 May 1;36(5):1086-1100. doi: 10.1093/molbev/msz049.
4
A phylogenetic method linking nucleotide substitution rates to rates of continuous trait evolution.
PLoS Comput Biol. 2024 Apr 24;20(4):e1011995. doi: 10.1371/journal.pcbi.1011995. eCollection 2024 Apr.
5
A Comprehensive Study of Cyanobacterial Morphological and Ecological Evolutionary Dynamics through Deep Geologic Time.
PLoS One. 2016 Sep 20;11(9):e0162539. doi: 10.1371/journal.pone.0162539. eCollection 2016.
6
Convergent evolution of noncoding elements associated with short tarsus length in birds.
BMC Biol. 2025 Feb 21;23(1):52. doi: 10.1186/s12915-025-02156-4.
7
Evolution of homologous recombination rates across bacteria.
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2316302121. doi: 10.1073/pnas.2316302121. Epub 2024 Apr 24.
10
Bayesian Molecular Clock Dating Using Genome-Scale Datasets.
Methods Mol Biol. 2019;1910:309-330. doi: 10.1007/978-1-4939-9074-0_10.

引用本文的文献

1
From Trees to Traits: A Review of Advances in PhyloG2P Methods and Future Directions.
Genome Biol Evol. 2025 Sep 2;17(9). doi: 10.1093/gbe/evaf150.
2
Convergent evolution of noncoding elements associated with short tarsus length in birds.
BMC Biol. 2025 Feb 21;23(1):52. doi: 10.1186/s12915-025-02156-4.

本文引用的文献

1
A nuclear genome assembly of an extinct flightless bird, the little bush moa.
Sci Adv. 2024 May 24;10(21):eadj6823. doi: 10.1126/sciadv.adj6823. Epub 2024 May 23.
2
Challenges and advances in measuring phenotypic convergence.
Evolution. 2024 Jul 29;78(8):1355-1371. doi: 10.1093/evolut/qpae081.
3
A phylogenetic method linking nucleotide substitution rates to rates of continuous trait evolution.
PLoS Comput Biol. 2024 Apr 24;20(4):e1011995. doi: 10.1371/journal.pcbi.1011995. eCollection 2024 Apr.
4
Genomes, fossils, and the concurrent rise of modern birds and flowering plants in the Late Cretaceous.
Proc Natl Acad Sci U S A. 2024 Feb 20;121(8):e2319696121. doi: 10.1073/pnas.2319696121. Epub 2024 Feb 12.
5
Convergent genomic signatures associated with vertebrate viviparity.
BMC Biol. 2024 Feb 8;22(1):34. doi: 10.1186/s12915-024-01837-w.
6
A Fast, Reproducible, High-throughput Variant Calling Workflow for Population Genomics.
Mol Biol Evol. 2024 Jan 3;41(1). doi: 10.1093/molbev/msad270.
7
VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center in 2023.
Nucleic Acids Res. 2024 Jan 5;52(D1):D808-D816. doi: 10.1093/nar/gkad1003.
8
Convergence in hearing-related genes between echolocating birds and mammals.
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2307340120. doi: 10.1073/pnas.2307340120. Epub 2023 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验