Department of Chemistry, Graphic Era University, 248002, Dehradun, India.
Department of Chemistry, School of Basic & Applied Sciences, Shri Guru Ram Rai University, Dehradun, India.
Environ Sci Pollut Res Int. 2024 Jun;31(27):39331-39349. doi: 10.1007/s11356-024-33819-4. Epub 2024 May 30.
In this study, a biogenic magnetic nanocomposite, HAP@DEX@MNP, using hydroxyapatite from eggshell waste and dextran was developed to efficiently remove 2,4-D from aqueous solutions. The magnetic nano biocomposite underwent rigorous characterization using a comprehensive suite of analytical techniques, including FTIR, XRD, FESEM, EDX, TEM, and VSM. FTIR analysis was used to validate the existence of pivotal functional groups, such as phosphate, carbonyl, hydroxyl, and iron oxide. XRD analysis verified both the crystalline nature of hydroxyapatite and the successful integration of dextran and hematite within the composite structure. FESEM and EDX examinations provided valuable insights into the surface morphology and elemental composition. TEM observations elucidated the existence of nano-sized particles underscoring the unique structural characteristics of the nanocomposite. Batch adsorption experiments were conducted under optimized conditions, highlighting the critical role of pH 2 for efficient 2,4-D removal. The mechanisms driving the binding of 2,4-D to HAP@DEX@MNP were found to encompass diverse interactions, encompassing electrostatic forces, hydrogen bonding, π-π interactions, and van der Waals forces. Adsorption isotherm studies revealed both monolayer and multilayer adsorption, with the Langmuir and Freundlich models fitting well, indicating a maximal adsorption capacity of 217.39 µg/g at 25 °C. Kinetic investigations supported the pseudo-second-order model for efficient adsorption dynamics, and thermodynamic analysis emphasized the versatility of HAP@DEX@MNP across different temperatures. Importantly, the study highlighted the remarkable regenerative capacity of the nanocomposite using a 0.1 M NaOH solution, positioning it as an environmentally friendly option for water treatment. In conclusion, HAP@DEX@MNP holds significant potential for diverse applications in addressing global water treatment and environmental challenges.
在这项研究中,开发了一种生物磁纳米复合材料 HAP@DEX@MNP,它使用蛋壳废物中的羟基磷灰石和葡聚糖,以有效地从水溶液中去除 2,4-D。该磁性纳米生物复合材料经过一系列综合分析技术的严格表征,包括傅里叶变换红外光谱(FTIR)、X 射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、能谱分析(EDX)、透射电子显微镜(TEM)和振动样品磁强计(VSM)。FTIR 分析用于验证关键官能团的存在,如磷酸盐、羰基、羟基和氧化铁。XRD 分析验证了羟基磷灰石的结晶性质以及葡聚糖和赤铁矿在复合材料结构中的成功整合。FESEM 和 EDX 检查提供了有关表面形态和元素组成的有价值的见解。TEM 观察阐明了纳米尺寸颗粒的存在,突出了纳米复合材料的独特结构特征。在优化条件下进行了批量吸附实验,突出了 pH 2 对有效去除 2,4-D 的关键作用。发现 2,4-D 与 HAP@DEX@MNP 结合的机制包括多种相互作用,包括静电力、氢键、π-π 相互作用和范德华力。吸附等温线研究表明存在单层和多层吸附,Langmuir 和 Freundlich 模型拟合良好,表明在 25°C 时最大吸附容量为 217.39µg/g。动力学研究支持了高效吸附动力学的伪二阶模型,热力学分析强调了 HAP@DEX@MNP 在不同温度下的多功能性。重要的是,该研究突出了纳米复合材料使用 0.1 M NaOH 溶液的显著再生能力,使其成为水处理的环保选择。总之,HAP@DEX@MNP 在应对全球水处理和环境挑战方面具有重要的潜在应用价值。