Suppr超能文献

对“癌症风险外显率的贝叶斯荟萃分析”讨论的回应。

Rejoinder to the discussion on "Bayesian meta-analysis of penetrance for cancer risk".

机构信息

Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75080, USA.

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.

出版信息

Biometrics. 2024 Mar 27;80(2). doi: 10.1093/biomtc/ujae040.

Abstract

The five discussions of our paper provide several modeling alternatives, extensions, and generalizations that can potentially guide future research in meta-analysis. In this rejoinder, we briefly summarize and comment on some of those points.

摘要

本文的五个讨论提供了几种可能有助于未来元分析研究的建模选择、扩展和推广。在本回应中,我们简要总结和评论了其中的一些要点。

相似文献

1
Rejoinder to the discussion on "Bayesian meta-analysis of penetrance for cancer risk".
Biometrics. 2024 Mar 27;80(2). doi: 10.1093/biomtc/ujae040.
2
Bayesian meta-analysis of penetrance for cancer risk.
Biometrics. 2024 Mar 27;80(2). doi: 10.1093/biomtc/ujae038.
8
Rejoinder on "ascertainment adjustment in complex diseases".
Genet Epidemiol. 2002 Oct;23(3):219-20. doi: 10.1002/gepi.10198.
9
Penetrance of male breast cancer susceptibility genes: a systematic review.
Breast Cancer Res Treat. 2022 Jan;191(1):31-38. doi: 10.1007/s10549-021-06413-2. Epub 2021 Oct 13.

引用本文的文献

1
Adjusting for Ascertainment Bias in Meta-Analysis of Penetrance for Cancer Risk.
Stat Med. 2025 Feb 10;44(3-4):e10323. doi: 10.1002/sim.10323.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验