纳米注射:离体细胞工程创新平台。

Nanoinjection: A Platform for Innovation in Ex Vivo Cell Engineering.

机构信息

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China.

Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.

出版信息

Acc Chem Res. 2024 Jun 18;57(12):1722-1735. doi: 10.1021/acs.accounts.4c00190. Epub 2024 May 31.

Abstract

ConspectusIn human cells, intracellular access and therapeutic cargo transport, including gene-editing tools (e.g., CRISPR-Cas9 and transposons), nucleic acids (e.g., DNA, mRNA, and siRNA), peptides, and proteins (e.g., enzymes and antibodies), are tightly constrained to ensure healthy cell function and behavior. This principle is exemplified in the delivery mechanisms of chimeric antigen receptor (CAR)-T cells for ex-vivo immunotherapy. In particular, the clinical success of CAR-T cells has established a new standard of care by curing previously incurable blood cancers. The approach involves the delivery, typically via the use of electroporation (EP) and lentivirus, of therapeutic CAR genes into a patient's own T cells, which are then engineered to express CARs that target and combat their blood cancer. But the key difficulty lies in genetically manipulating these cells without causing irreversible damage or loss of function─all the while minimizing complexities of manufacturing, safety concerns, and costs, and ensuring the efficacy of the final CAR-T cell product.Nanoinjection─the process of intracellular delivery using nanoneedles (NNs)─is an emerging physical delivery route that efficiently negotiates the plasma membrane of many cell types, including primary human T cells. It occurs with minimal perturbation, invasiveness, and toxicity, with high efficiency and throughput at high spatial and temporal resolutions. Nanoinjection promises greatly improved delivery of a broad range of therapeutic cargos with little or no damage to those cargos. A nanoinjection platform allows these cargos to function in the intracellular space as desired. The adaptability of nanoinjection platforms is now bringing major advantages in immunomodulation, mechanotransduction, sampling of cell states (nanobiopsy), controlled intracellular interrogation, and the primary focus of this account─intracellular delivery and its applications in ex vivo cell engineering.Mechanical nanoinjection typically exerts direct mechanical force on the cell membrane, offering a straightforward route to improve membrane perturbation by the NNs and subsequent transport of genetic cargo into targeted cell type (adherent or suspension cells). By contrast, electroactive nanoinjection is controlled by coupling NNs with an electric field─a new route for activating electroporation (EP) at the nanoscale─allowing a dramatic reduction of the applied voltage to a cell and so minimizing post-EP damage to cells and cargo, and overcoming many of the limitations of conventional bulk EP. Nanoinjection transcends mere technique; it is an approach to cell engineering ex vivo, offering the potential to endow cells with new, powerful features such as generating chimeric antigen receptor (CAR)-T cells for future CAR-T cell technologies.We first discuss the manufacturing of NN devices (Section 2), then delve into nanoinjection-mediated cell engineering (Section 3), nanoinjection mechanisms and interfacing methodologies (Section 4), and emerging applications in using nanoinjection to create functional CAR-T cells (Section 5).

摘要

概述

在人类细胞中,包括基因编辑工具(如 CRISPR-Cas9 和转座子)、核酸(如 DNA、mRNA 和 siRNA)、肽和蛋白质(如酶和抗体)在内的细胞内进入和治疗性货物运输受到严格限制,以确保细胞的健康功能和行为。这一原则在嵌合抗原受体 (CAR)-T 细胞的体外免疫疗法的输送机制中得到了体现。特别是,CAR-T 细胞的临床成功通过治愈以前无法治愈的血液癌,建立了新的护理标准。该方法涉及将治疗性 CAR 基因递送至患者自身 T 细胞中,通常通过使用电穿孔 (EP) 和慢病毒来实现,然后对 T 细胞进行基因工程改造,使其表达靶向和对抗血液癌的 CAR。但关键的困难在于在不造成不可逆转的损伤或功能丧失的情况下对这些细胞进行基因操作——同时最大限度地减少制造、安全性和成本的复杂性,并确保最终 CAR-T 细胞产品的疗效。

纳米注射——使用纳米针 (NN) 进行细胞内递药的过程——是一种新兴的物理递药途径,可有效地穿透包括原代人 T 细胞在内的多种细胞类型的质膜。它以最小的干扰、侵入性和毒性发生,具有高效率和高通量,以及高时空分辨率。纳米注射有望极大地改善多种治疗性货物的递药效果,而对这些货物的损伤最小或几乎没有损伤。纳米注射平台允许这些货物在细胞内空间中按预期发挥作用。纳米注射平台的适应性正在为免疫调节、机械转导、细胞状态采样(纳米活检)、细胞内的受控询问以及本报告的主要重点——细胞内递药及其在体外细胞工程中的应用带来重大优势。

机械纳米注射通常对细胞膜施加直接机械力,为通过 NN 改善细胞膜扰动并随后将遗传货物递送至靶向细胞类型(贴壁或悬浮细胞)提供了一种简单的途径。相比之下,电活性纳米注射通过将 NN 与电场耦合来控制——这是在纳米尺度上激活电穿孔 (EP) 的新途径——允许将施加到细胞的电压大幅降低,从而最小化 EP 后对细胞和货物的损伤,并克服了传统批量 EP 的许多限制。纳米注射不仅仅是一种技术;它是一种体外细胞工程方法,有可能赋予细胞新的强大功能,例如生成嵌合抗原受体 (CAR)-T 细胞,用于未来的 CAR-T 细胞技术。

我们首先讨论 NN 器件的制造(第 2 节),然后深入研究纳米注射介导的细胞工程(第 3 节)、纳米注射机制和接口方法学(第 4 节),以及使用纳米注射创建功能性 CAR-T 细胞的新兴应用(第 5 节)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/786f/11191407/3d8aab5e7be3/ar4c00190_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索