Suppr超能文献

咪唑类化合物是可调节的离去基团,可用于开发酪氨酸反应性亲电试剂。

Imidazoles are Tunable Nucleofuges for Developing Tyrosine-Reactive Electrophiles.

机构信息

Department of Chemistry, University of Texas at Austin, 100 E 24th St, Texas, 78712, United States.

Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, United States.

出版信息

Chembiochem. 2024 Aug 19;25(16):e202400382. doi: 10.1002/cbic.202400382. Epub 2024 Jul 18.

Abstract

Imidazole-1-sulfonyl and -sulfonate (imidazylate) are widely used in synthetic chemistry as nucleofuges for diazotransfer, nucleophilic substitution, and cross-coupling reactions. The utility of these reagents for protein bioconjugation, in contrast, have not been comprehensively explored and important considering the prevalence of imidazoles in biomolecules and drugs. Here, we synthesized a series of alkyne-modified sulfonyl- and sulfonate-imidazole probes to investigate the utility of this electrophile for protein binding. Alkylation of the distal nitrogen activated the nucleofuge capability of the imidazole to produce sulfonyl-imidazolium electrophiles that were highly reactive but unstable for biological applications. In contrast, arylsulfonyl imidazoles functioned as a tempered electrophile for assessing ligandability of select tyrosine and lysine sites in cell proteomes and when mated to a recognition element could produce targeted covalent inhibitors with reduced off-target activity. In summary, imidazole nucleofuges show balanced stability and tunability to produce sulfone-based electrophiles that bind functional tyrosine and lysine sites in the proteome.

摘要

咪唑-1-磺酰基和 -磺酸盐(咪唑盐)在合成化学中被广泛用作重氮转移、亲核取代和交叉偶联反应的亲核试剂。然而,这些试剂在蛋白质偶联中的应用尚未得到全面探索,考虑到咪唑在生物分子和药物中的普遍性,这一点非常重要。在这里,我们合成了一系列炔基修饰的磺酰基和磺酸盐咪唑探针,以研究这种亲电试剂在蛋白质结合中的应用。远端氮的烷基化激活了咪唑的亲核试剂能力,产生了高度反应性但不稳定的磺酰基咪唑鎓亲电试剂,不适用于生物应用。相比之下,芳基磺酰基咪唑作为一种温和的亲电试剂,可用于评估细胞蛋白质组中特定酪氨酸和赖氨酸位点的配体结合能力,并且当与识别元件结合时,可以产生具有降低脱靶活性的靶向共价抑制剂。总之,咪唑亲核试剂表现出平衡的稳定性和可调节性,可产生基于砜的亲电试剂,与蛋白质组中的功能性酪氨酸和赖氨酸位点结合。

相似文献

1
Imidazoles are Tunable Nucleofuges for Developing Tyrosine-Reactive Electrophiles.
Chembiochem. 2024 Aug 19;25(16):e202400382. doi: 10.1002/cbic.202400382. Epub 2024 Jul 18.
4
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
5
Inhaled steroids and risk of pneumonia for chronic obstructive pulmonary disease.
Cochrane Database Syst Rev. 2014 Mar 10;2014(3):CD010115. doi: 10.1002/14651858.CD010115.pub2.
7
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
10
AIE-ESIPT synergistic fluorescence probe for superoxide and hypochlorite using acetoxy-substituted tetraphenyl imidazole.
Anal Chim Acta. 2025 Oct 1;1369:344363. doi: 10.1016/j.aca.2025.344363. Epub 2025 Jul 3.

引用本文的文献

1
Advances in sulfonyl exchange chemical biology: expanding druggable target space.
Chem Sci. 2025 May 6;16(23):10119-10140. doi: 10.1039/d5sc02647d. eCollection 2025 Jun 11.
2
Advancing Covalent Ligand and Drug Discovery beyond Cysteine.
Chem Rev. 2025 Jul 23;125(14):6653-6684. doi: 10.1021/acs.chemrev.5c00001. Epub 2025 May 22.
3
Open-source electrophilic fragment screening platform to identify chemical starting points for UCHL1 covalent inhibitors.
SLAS Discov. 2024 Dec;29(8):100198. doi: 10.1016/j.slasd.2024.100198. Epub 2024 Nov 30.

本文引用的文献

1
Covalent Stapling of the Cereblon Sensor Loop Histidine Using Sulfur-Heterocycle Exchange.
ACS Med Chem Lett. 2023 Oct 24;14(11):1576-1581. doi: 10.1021/acsmedchemlett.3c00371. eCollection 2023 Nov 9.
2
Global Discovery of Covalent Modulators of Ribonucleoprotein Granules.
J Am Chem Soc. 2023 May 24;145(20):11056-11066. doi: 10.1021/jacs.3c00165. Epub 2023 May 9.
3
Aryl Fluorosulfate Based Inhibitors That Covalently Target the SIRT5 Lysine Deacylase.
Angew Chem Int Ed Engl. 2022 Nov 21;61(47):e202204565. doi: 10.1002/anie.202204565. Epub 2022 Oct 21.
4
Tetrazine-Induced Bioorthogonal Activation of Vitamin E-Modified siRNA for Gene Silencing.
Molecules. 2022 Jul 8;27(14):4377. doi: 10.3390/molecules27144377.
5
Facile synthesis of α-aminophosphine oxides from diarylphosphine oxides, arynes and formamides.
Chem Commun (Camb). 2021 Sep 21;57(75):9578-9581. doi: 10.1039/d1cc04101k.
6
Imidazole as a Promising Medicinal Scaffold: Current Status and Future Direction.
Drug Des Devel Ther. 2021 Jul 29;15:3289-3312. doi: 10.2147/DDDT.S307113. eCollection 2021.
7
Discovery of a Cell-Active SuTEx Ligand of Prostaglandin Reductase 2.
Chembiochem. 2021 Jun 15;22(12):2134-2139. doi: 10.1002/cbic.202000879. Epub 2021 Apr 29.
8
Lipoprotein Lipase and Its Regulators: An Unfolding Story.
Trends Endocrinol Metab. 2021 Jan;32(1):48-61. doi: 10.1016/j.tem.2020.11.005. Epub 2020 Dec 1.
9
Activity-Based Sensing with a Metal-Directed Acyl Imidazole Strategy Reveals Cell Type-Dependent Pools of Labile Brain Copper.
J Am Chem Soc. 2020 Sep 2;142(35):14993-15003. doi: 10.1021/jacs.0c05727. Epub 2020 Aug 20.
10
Synthesis of F-Labeled Aryl Fluorosulfates via Nucleophilic Radiofluorination.
Org Lett. 2020 Jul 17;22(14):5511-5516. doi: 10.1021/acs.orglett.0c01868. Epub 2020 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验