体重指数与细菌性阴道病患病率的相关性:NHANES 2001-2004 研究结果。

Association between body mass index and prevalence of bacterial vaginosis: Results from the NHANES 2001-2004 study.

机构信息

Department of Gynecology, Hebei General Hospital, Shijiazhuang, China.

出版信息

PLoS One. 2024 May 31;19(5):e0296455. doi: 10.1371/journal.pone.0296455. eCollection 2024.

Abstract

BACKGROUND

The impact of bacterial vaginosis on women's health is an increasing concern; however, the effect of the obesity index on bacterial vaginosis is controversial. We investigated the association between body mass index and bacterial vaginosis in women in the United States.

METHODS

This was a cross-sectional study which obtained the data from the National Health and Nutrition Examination Survey from 2001 to 2004, in which weighted multivariate regression and logistic regression analyses were performed to explore the independent relationship between body mass index and bacterial vaginosis. Subgroup analyses and smoothed curve fitting were also performed.

RESULTS

A total of 5,428 participants were enrolled, and the findings show that the participants with higher body mass index tended to have a higher incidence of bacterial vaginosis. In the fully adjusted model, a positive association between bacterial vaginosis and body mass index was observed (Odd's ratio = 1.03, 95% Confidence interval, 1.01-1.04). The subgroup analysis showed that this positive association was significant in non-Hispanic White individuals (Odd's ratio = 1.0327, 95% Confidence interval, 1.0163, 1.0493).

CONCLUSION

Increased bacterial vaginosis positivity may be associated with an increased body mass index.

摘要

背景

细菌性阴道病对女性健康的影响日益受到关注;然而,肥胖指数对细菌性阴道病的影响存在争议。我们研究了美国女性的体重指数与细菌性阴道病之间的关系。

方法

这是一项横断面研究,从 2001 年至 2004 年的全国健康和营养调查中获取数据,采用加权多变量回归和逻辑回归分析来探讨体重指数与细菌性阴道病之间的独立关系。还进行了亚组分析和平滑曲线拟合。

结果

共纳入 5428 名参与者,研究结果表明,体重指数较高的参与者细菌性阴道病的发生率较高。在完全调整的模型中,观察到细菌性阴道病与体重指数之间存在正相关(优势比=1.03,95%置信区间,1.01-1.04)。亚组分析表明,这种正相关在非西班牙裔白人个体中显著(优势比=1.0327,95%置信区间,1.0163,1.0493)。

结论

细菌性阴道病阳性率的增加可能与体重指数的增加有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c161/11142476/c3a04f6ceaef/pone.0296455.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索