School of Software, Hefei University of Technology, Hefei, 230601, Anhui Province, China.
School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, 230601, Anhui Province, China.
Comput Methods Programs Biomed. 2024 Aug;253:108237. doi: 10.1016/j.cmpb.2024.108237. Epub 2024 May 23.
BACKGROUND AND OBJECTIVES: Graph neural network (GNN) has been extensively used in histopathology whole slide image (WSI) analysis due to the efficiency and flexibility in modelling relationships among entities. However, most existing GNN-based WSI analysis methods only consider the pairwise correlation of patches from one single perspective (e.g. spatial affinity or embedding similarity) yet ignore the intrinsic non-pairwise relationships present in gigapixel WSI, which are likely to contribute to feature learning and downstream tasks. The objective of this study is therefore to explore the non-pairwise relationships in histopathology WSI and exploit them to guide the learning of slide-level representations for better classification performance. METHODS: In this paper, we propose a novel Masked HyperGraph Learning (MaskHGL) framework for weakly supervised histopathology WSI classification. Compared with most GNN-based WSI classification methods, MaskHGL exploits the non-pairwise correlations between patches with hypergraph and global message passing conducted by hypergraph convolution. Concretely, multi-perspective hypergraphs are first built for each WSI, then hypergraph attention is introduced into the jointed hypergraph to propagate the non-pairwise relationships and thus yield more discriminative node representation. More importantly, a masked hypergraph reconstruction module is devised to guide the hypergraph learning which can generate more powerful robustness and generalization than the method only using hypergraph modelling. Additionally, a self-attention-based node aggregator is also applied to explore the global correlation of patches in WSI and produce the slide-level representation for classification. RESULTS: The proposed method is evaluated on two public TCGA benchmark datasets and one in-house dataset. On the public TCGA-LUNG (1494 WSIs) and TCGA-EGFR (696 WSIs) test set, the area under receiver operating characteristic (ROC) curve (AUC) were 0.9752±0.0024 and 0.7421±0.0380, respectively. On the USTC-EGFR (754 WSIs) dataset, MaskHGL achieved significantly better performance with an AUC of 0.8745±0.0100, which surpassed the second-best state-of-the-art method SlideGraph+ 2.64%. CONCLUSIONS: MaskHGL shows a great improvement, brought by considering the intrinsic non-pairwise relationships within WSI, in multiple downstream WSI classification tasks. In particular, the designed masked hypergraph reconstruction module promisingly alleviates the data scarcity and greatly enhances the robustness and classification ability of our MaskHGL. Notably, it has shown great potential in cancer subtyping and fine-grained lung cancer gene mutation prediction from hematoxylin and eosin (H&E) stained WSIs.
背景与目的:由于在建模实体之间关系方面的高效性和灵活性,图神经网络(GNN)已在组织病理学全切片图像(WSI)分析中得到了广泛应用。然而,大多数现有的基于 GNN 的 WSI 分析方法仅考虑来自单个角度的斑块的成对相关性(例如,空间亲和度或嵌入相似度),而忽略了千兆像素 WSI 中存在的内在非成对关系,这些关系可能有助于特征学习和下游任务。因此,本研究的目的是探索组织病理学 WSI 中的非成对关系,并利用这些关系来指导幻灯片级表示的学习,以实现更好的分类性能。
方法:在本文中,我们提出了一种用于弱监督组织病理学 WSI 分类的新型掩蔽超图学习(MaskHGL)框架。与大多数基于 GNN 的 WSI 分类方法相比,MaskHGL 利用超图和通过超图卷积进行的全局消息传递来对斑块之间的非成对相关性进行建模。具体来说,首先为每个 WSI 构建多视角超图,然后引入超图注意力来传播非成对关系,从而产生更具鉴别力的节点表示。更重要的是,设计了一个掩蔽超图重建模块来指导超图学习,这比仅使用超图建模的方法可以产生更强的鲁棒性和泛化能力。此外,还应用了基于自注意力的节点聚合器来探索 WSI 中斑块的全局相关性,并生成用于分类的幻灯片级表示。
结果:该方法在两个公共 TCGA 基准数据集和一个内部数据集上进行了评估。在公共 TCGA-LUNG(1494 张 WSI)和 TCGA-EGFR(696 张 WSI)测试集中,接收器工作特征(ROC)曲线下的面积(AUC)分别为 0.9752±0.0024 和 0.7421±0.0380。在 USTC-EGFR(754 张 WSI)数据集上,MaskHGL 的表现明显更好,AUC 为 0.8745±0.0100,比第二好的最先进方法 SlideGraph+高出 2.64%。
结论:通过考虑 WSI 内部的内在非成对关系,MaskHGL 在多个下游 WSI 分类任务中取得了显著的改进。特别是,设计的掩蔽超图重建模块有望缓解数据稀缺性,并极大地增强了我们的 MaskHGL 的鲁棒性和分类能力。值得注意的是,它在从苏木精和伊红(H&E)染色的 WSI 中进行癌症亚型分类和细粒度肺癌基因突变预测方面显示出巨大的潜力。
Comput Methods Programs Biomed. 2024-8
IEEE Trans Cybern. 2020-9
IEEE Trans Med Imaging. 2023-5
IEEE Trans Pattern Anal Mach Intell. 2023-9
Phys Med Biol. 2023-7-19
Comput Biol Med. 2024-8
Comput Methods Programs Biomed. 2024-4
Comput Methods Programs Biomed. 2024-2
Med Image Anal. 2023-10