Otto H. York Chemical and Materials Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America.
Bioengineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America.
Biofabrication. 2024 Jun 11;16(3). doi: 10.1088/1758-5090/ad52f1.
Embedded bioprinting is an emerging technology for precise deposition of cell-laden or cell-only bioinks to construct tissue like structures. Bioink is extruded or transferred into a yield stress hydrogel or a microgel support bath allowing print needle motion during printing and providing temporal support for the printed construct. Although this technology has enabled creation of complex tissue structures, it remains a challenge to develop a support bath with user-defined extracellular mimetic cues and their spatial and temporal control. This is crucial to mimic the dynamic nature of the native tissue to better regenerate tissues and organs. To address this, we present a bioprinting approach involving printing of a photocurable viscous support layer and bioprinting of a cell-only or cell-laden bioink within this viscous layer followed by brief exposure to light to partially crosslink the support layer. This approach does not require shear thinning behavior and is suitable for a wide range of photocurable hydrogels to be used as a support. It enables multi-material printing to spatially control support hydrogel heterogeneity including temporal delivery of bioactive cues (e.g. growth factors), and precise patterning of dense multi-cellular structures within these hydrogel supports. Here, dense stem cell aggregates are printed within methacrylated hyaluronic acid-based hydrogels with patterned heterogeneity to spatially modulate human mesenchymal stem cell osteogenesis. This study has significant impactions on creating tissue interfaces (e.g. osteochondral tissue) in which spatial control of extracellular matrix properties for patterned stem cell differentiation is crucial.
嵌入式生物打印是一种新兴的技术,用于精确沉积细胞负载或仅细胞的生物墨水,以构建类似组织的结构。生物墨水被挤出或转移到屈服应力水凝胶或微凝胶支撑浴中,允许打印针在打印过程中移动,并为打印结构提供暂时的支撑。尽管这项技术已经能够创建复杂的组织结构,但仍然面临着开发具有用户定义的细胞外模拟线索及其时空控制的支撑浴的挑战。这对于模拟天然组织的动态特性,从而更好地再生组织和器官至关重要。为了解决这个问题,我们提出了一种生物打印方法,包括打印光固化粘性支撑层和在该粘性层内打印仅细胞或细胞负载的生物墨水,然后短暂暴露于光下,使支撑层部分交联。这种方法不需要剪切变稀行为,适用于广泛的光固化水凝胶作为支撑。它能够实现多材料打印,以空间控制支撑水凝胶的异质性,包括生物活性线索(例如生长因子)的时间传递,以及在这些水凝胶支撑内精确图案化密集的多细胞结构。在这里,密集的干细胞聚集体被打印在甲基丙烯酰化透明质酸基水凝胶中,具有图案化的异质性,以空间调节人间充质干细胞成骨。这项研究对于创建组织界面(例如骨软骨组织)具有重要的影响,在这些界面中,对图案化干细胞分化的细胞外基质特性的空间控制至关重要。