文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用可解释的机器学习和 Fitbit 数据研究青少年肥胖的预测因素。

Using explainable machine learning and fitbit data to investigate predictors of adolescent obesity.

机构信息

Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA.

School of Physiology, University of the Witwatersrand, Parktown, Johannesburg, South Africa.

出版信息

Sci Rep. 2024 May 31;14(1):12563. doi: 10.1038/s41598-024-60811-2.


DOI:10.1038/s41598-024-60811-2
PMID:38821981
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11143310/
Abstract

Sociodemographic and lifestyle factors (sleep, physical activity, and sedentary behavior) may predict obesity risk in early adolescence; a critical period during the life course. Analyzing data from 2971 participants (M = 11.94, SD = 0.64 years) wearing Fitbit Charge HR 2 devices in the Adolescent Brain Cognitive Development (ABCD) Study, glass box machine learning models identified obesity predictors from Fitbit-derived measures of sleep, cardiovascular fitness, and sociodemographic status. Key predictors of obesity include identifying as Non-White race, low household income, later bedtime, short sleep duration, variable sleep timing, low daily step counts, and high heart rates (AUC = 0.726). Findings highlight the importance of inadequate sleep, physical inactivity, and socioeconomic disparities, for obesity risk. Results also show the clinical applicability of wearables for continuous monitoring of sleep and cardiovascular fitness in adolescents. Identifying the tipping points in the predictors of obesity risk can inform interventions and treatment strategies to reduce obesity rates in adolescents.

摘要

社会人口学和生活方式因素(睡眠、身体活动和久坐行为)可能会预测青少年早期肥胖的风险;这是人生历程中的一个关键时期。在青少年大脑认知发育研究(ABCD 研究)中,分析了 2971 名佩戴 Fitbit Charge HR 2 设备的参与者的数据,玻璃箱机器学习模型从 Fitbit 测量的睡眠、心血管健康和社会人口统计学数据中确定了肥胖的预测因素。肥胖的主要预测因素包括非白种人、低收入家庭、晚睡、睡眠时间短、睡眠时间不规律、日常步数少和心率高(AUC=0.726)。研究结果强调了睡眠不足、身体活动不足和社会经济差距对肥胖风险的重要性。研究结果还表明,可穿戴设备在青少年中连续监测睡眠和心血管健康具有临床适用性。确定肥胖风险预测因素的临界点可以为干预和治疗策略提供信息,以降低青少年肥胖率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe46/11143310/179a5877a326/41598_2024_60811_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe46/11143310/c1747253b92e/41598_2024_60811_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe46/11143310/ac63f5b3c218/41598_2024_60811_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe46/11143310/aeef30379f62/41598_2024_60811_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe46/11143310/1d7f52b78191/41598_2024_60811_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe46/11143310/179a5877a326/41598_2024_60811_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe46/11143310/c1747253b92e/41598_2024_60811_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe46/11143310/ac63f5b3c218/41598_2024_60811_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe46/11143310/aeef30379f62/41598_2024_60811_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe46/11143310/1d7f52b78191/41598_2024_60811_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe46/11143310/179a5877a326/41598_2024_60811_Fig5_HTML.jpg

相似文献

[1]
Using explainable machine learning and fitbit data to investigate predictors of adolescent obesity.

Sci Rep. 2024-5-31

[2]
Social epidemiology of Fitbit daily steps in early adolescence.

Pediatr Res. 2023-11

[3]
Sleep Patterns and Quality Are Associated with Severity of Obesity and Weight-Related Behaviors in Adolescents with Overweight and Obesity.

Child Obes. 2018-1

[4]
Cross-sectional associations of objectively assessed sleep duration with physical activity, BMI and television viewing in German primary school children.

BMC Pediatr. 2019-2-11

[5]
Identifying Key Determinants of Childhood Obesity: A Narrative Review of Machine Learning Studies.

Child Obes. 2021-4

[6]
Independent and combined influences of physical activity, screen time, and sleep quality on adiposity indicators in Indian adolescents.

BMC Public Health. 2021-11-15

[7]
Compositional associations of time spent in sleep, sedentary behavior and physical activity with obesity measures in children.

Int J Obes (Lond). 2018-3-5

[8]
Actigraphy-based sleep analysis in sedentary and overweight/obese adults with primary hypertension: data from the EXERDIET-HTA study.

Sleep Breath. 2019-12

[9]
Sedentary Behavior, Exercise, and Cardiovascular Health.

Circ Res. 2019-3

[10]
Association between Clustering of Lifestyle Behaviors and Health-Related Physical Fitness in Youth: The UP&DOWN Study.

J Pediatr. 2018-5-24

引用本文的文献

[1]
Detection and Analysis of Circadian Biomarkers for Metabolic Syndrome Using Wearable Data: Cross-Sectional Study.

JMIR Med Inform. 2025-7-16

[2]
Differences between Type 2 Diabetes Mellitus and Obesity Management: Medical, Social, and Public Health Perspectives.

Diabetes Metab J. 2025-7

[3]
Machine learning applied to wearable fitness tracker data and the risk of hospitalizations and cardiovascular events.

Am J Prev Cardiol. 2025-5-17

[4]
Body Weight Perception and Other Factors Associated with Overweight and Obesity in U.S. Adolescents.

Children (Basel). 2025-1-29

[5]
Big data approaches for novel mechanistic insights on sleep and circadian rhythms: a workshop summary.

Sleep. 2025-6-13

[6]
Race, Ethnicity, and Sleep in US Children.

JAMA Netw Open. 2024-12-2

本文引用的文献

[1]
Association of Demographic and Socioeconomic Indicators With the Use of Wearable Devices Among Children.

JAMA Netw Open. 2023-3-1

[2]
The Effectiveness of Wearable Devices as Physical Activity Interventions for Preventing and Treating Obesity in Children and Adolescents: Systematic Review and Meta-analysis.

JMIR Mhealth Uhealth. 2022-4-8

[3]
Use of Fitbit Devices in Physical Activity Intervention Studies Across the Life Course: Narrative Review.

JMIR Mhealth Uhealth. 2021-5-28

[4]
Young People's Use of Digital Health Technologies in the Global North: Narrative Review.

J Med Internet Res. 2021-1-11

[5]
Effectiveness of an mHealth Intervention Combining a Smartphone App and Smart Band on Body Composition in an Overweight and Obese Population: Randomized Controlled Trial (EVIDENT 3 Study).

JMIR Mhealth Uhealth. 2020-11-26

[6]
The Use of Self-Monitoring and Technology to Increase Physical Activity: A Review of the Literature.

Perspect Behav Sci. 2020-8-10

[7]
Performance of a commercial multi-sensor wearable (Fitbit Charge HR) in measuring physical activity and sleep in healthy children.

PLoS One. 2020-9-4

[8]
Trends in Obesity Prevalence by Race and Hispanic Origin-1999-2000 to 2017-2018.

JAMA. 2020-9-22

[9]
Reduced Physical Activity During COVID-19 Pandemic in Children With Congenital Heart Disease.

Can J Cardiol. 2020-5-5

[10]
Anxiety and depression in children and adolescents with obesity: a nationwide study in Sweden.

BMC Med. 2020-2-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索