Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA.
School of Physiology, University of the Witwatersrand, Parktown, Johannesburg, South Africa.
Sci Rep. 2024 May 31;14(1):12563. doi: 10.1038/s41598-024-60811-2.
Sociodemographic and lifestyle factors (sleep, physical activity, and sedentary behavior) may predict obesity risk in early adolescence; a critical period during the life course. Analyzing data from 2971 participants (M = 11.94, SD = 0.64 years) wearing Fitbit Charge HR 2 devices in the Adolescent Brain Cognitive Development (ABCD) Study, glass box machine learning models identified obesity predictors from Fitbit-derived measures of sleep, cardiovascular fitness, and sociodemographic status. Key predictors of obesity include identifying as Non-White race, low household income, later bedtime, short sleep duration, variable sleep timing, low daily step counts, and high heart rates (AUC = 0.726). Findings highlight the importance of inadequate sleep, physical inactivity, and socioeconomic disparities, for obesity risk. Results also show the clinical applicability of wearables for continuous monitoring of sleep and cardiovascular fitness in adolescents. Identifying the tipping points in the predictors of obesity risk can inform interventions and treatment strategies to reduce obesity rates in adolescents.
社会人口学和生活方式因素(睡眠、身体活动和久坐行为)可能会预测青少年早期肥胖的风险;这是人生历程中的一个关键时期。在青少年大脑认知发育研究(ABCD 研究)中,分析了 2971 名佩戴 Fitbit Charge HR 2 设备的参与者的数据,玻璃箱机器学习模型从 Fitbit 测量的睡眠、心血管健康和社会人口统计学数据中确定了肥胖的预测因素。肥胖的主要预测因素包括非白种人、低收入家庭、晚睡、睡眠时间短、睡眠时间不规律、日常步数少和心率高(AUC=0.726)。研究结果强调了睡眠不足、身体活动不足和社会经济差距对肥胖风险的重要性。研究结果还表明,可穿戴设备在青少年中连续监测睡眠和心血管健康具有临床适用性。确定肥胖风险预测因素的临界点可以为干预和治疗策略提供信息,以降低青少年肥胖率。
Pediatr Res. 2023-11
Circ Res. 2019-3
Children (Basel). 2025-1-29
JAMA Netw Open. 2024-12-2
JMIR Mhealth Uhealth. 2021-5-28
J Med Internet Res. 2021-1-11
Perspect Behav Sci. 2020-8-10