National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China.
Zhongyuan Research Center, The Chinese Academy of Agricultural Sciences, Xinxiang, 453000, P.R. China.
Angew Chem Int Ed Engl. 2024 Aug 12;63(33):e202406360. doi: 10.1002/anie.202406360. Epub 2024 Jul 11.
Unnatural product (uNP) nonribosomal peptides promise to be a valuable source of pharmacophores for drug discovery. However, the extremely large size and complexity of the nonribosomal peptide synthetase (NRPS) enzymes pose formidable challenges to the production of such uNPs by combinatorial biosynthesis and synthetic biology. Here we report a new NRPS dissection strategy that facilitates the engineering and heterologous production of these NRPSs. This strategy divides NRPSs into "splitting units", each forming an enzyme subunit that contains catalytically independent modules. Functional collaboration between the subunits is then facilitated by artificially duplicating, at the N-terminus of the downstream subunit, the linker - thiolation domain - linker fragment that is resident at the C-terminus of the upstream subunit. Using the suggested split site that follows a conserved motif in the linker connecting the adenylation and the thiolation domains allows cognate or chimeric splitting unit pairs to achieve productivities that match, and in many cases surpass those of hybrid chimeric enzymes, and even those of intact NRPSs, upon production in a heterologous chassis. Our strategy provides facile options for the rational engineering of fungal NRPSs and for the combinatorial reprogramming of nonribosomal peptide production.
非天然产物(uNP)非核糖体肽有望成为药物发现的药理学有效结构的宝贵来源。然而,非核糖体肽合成酶(NRPS)酶的巨大尺寸和复杂性对通过组合生物合成和合成生物学生产此类 uNP 构成了巨大的挑战。在这里,我们报告了一种新的 NRPS 剖析策略,该策略有助于这些 NRPS 的工程化和异源生产。该策略将 NRPS 分为“分裂单元”,每个单元形成一个包含催化独立模块的酶亚基。然后通过在下游亚基的 N 端人工复制位于上游亚基 C 端的连接-硫醇化结构域-连接片段,促进亚基之间的功能协作。使用建议的分裂位点,该位点遵循连接氨酰化和硫醇化结构域的连接子中的保守基序,允许同源或嵌合分裂单元对在异源底盘中生产时实现匹配的产率,并且在许多情况下超过杂交嵌合酶的产率,甚至超过完整 NRPS 的产率。我们的策略为真菌 NRPS 的合理工程化和非核糖体肽生产的组合重编程提供了简便的选择。