全蛋白质组范围的多中心孟德尔随机化分析鉴定肺癌新的治疗靶点。

Proteome-Wide Multicenter Mendelian Randomization Analysis to Identify Novel Therapeutic Targets for Lung Cancer.

机构信息

Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.

The Johns Hopkins University, Bloomberg School of Public Health, Epidemiology, Baltimore, MD, USA.

出版信息

Arch Bronconeumol. 2024 Sep;60(9):553-558. doi: 10.1016/j.arbres.2024.05.007. Epub 2024 May 16.

Abstract

INTRODUCTION

Lung cancer (LC) remains a leading cause of cancer mortality worldwide, underscoring the urgent need for novel therapeutic targets. The integration of Mendelian randomization (MR) with proteomic data presents a novel approach to identifying potential targets for LC treatment.

METHODS

This study utilized a proteome-wide MR analysis, leveraging publicly available data from genome-wide association studies (GWAS) and protein quantitative trait loci (pQTL) studies. We analyzed genetic association data for LC from the TRICL-ILCCO Consortium and proteomic data from the Decode cohort. The MR framework was employed to estimate the causal effects of specific proteins on LC risk, supplemented by external validation, co-localization analyses, and exploration of protein-protein interaction (PPI) networks.

RESULTS

Our analysis identified five proteins (TFPI, ICAM5, SFTPB, COL6A3, EPHB1) with significant associations to LC risk. External validation confirmed the potential therapeutic relevance of ICAM5 and SFTPB. Co-localization analyses and PPI network exploration provided further insights into the biological pathways involved and their potential mechanistic roles in LC pathogenesis.

CONCLUSION

The study highlights the power of integrating genomic and proteomic data through MR analysis to uncover novel therapeutic targets for lung cancer. The identified proteins, particularly ICAM5 and SFTPB, offer promising directions for future research and development of targeted therapies, demonstrating the potential to advance personalized medicine in lung cancer treatment.

摘要

简介

肺癌(LC)仍然是全球癌症死亡的主要原因,这突显了寻找新治疗靶点的迫切需求。将孟德尔随机化(MR)与蛋白质组学数据相结合,为寻找潜在的 LC 治疗靶点提供了一种新方法。

方法

本研究利用了全蛋白质组 MR 分析,利用了来自全基因组关联研究(GWAS)和蛋白质数量性状基因座(pQTL)研究的公开可用数据。我们分析了 TRICL-ILCCO 联盟的 LC 遗传关联数据和 Decode 队列的蛋白质组数据。采用 MR 框架估计特定蛋白质对 LC 风险的因果影响,并辅以外部验证、共定位分析和蛋白质-蛋白质相互作用(PPI)网络探索。

结果

我们的分析确定了五个与 LC 风险显著相关的蛋白质(TFPI、ICAM5、SFTPB、COL6A3、EPHB1)。外部验证证实了 ICAM5 和 SFTPB 作为潜在治疗靶点的潜在相关性。共定位分析和 PPI 网络探索提供了对涉及的生物学途径及其在 LC 发病机制中的潜在机制作用的进一步了解。

结论

该研究通过 MR 分析强调了整合基因组和蛋白质组数据的力量,以发现肺癌的新治疗靶点。鉴定的蛋白质,特别是 ICAM5 和 SFTPB,为未来的靶向治疗研究和开发提供了有希望的方向,展示了在肺癌治疗中推进个性化医学的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索