Tufano Michele, Lasschuijt Marlou P, Chauhan Aneesh, Feskens Edith J M, Camps Guido
Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands.
Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands.
Front Nutr. 2024 May 17;11:1343868. doi: 10.3389/fnut.2024.1343868. eCollection 2024.
Eating behavior is a key factor for nutritional intake and plays a significant role in the development of eating disorders and obesity. The standard methods to detect eating behavior events (i.e., bites and chews) from video recordings rely on manual annotation, which lacks objective assessment and standardization. Yet, video recordings of eating episodes provide a non-invasive and scalable source for automation. Here, we present a rule-based system to count bites automatically from video recordings with 468 3D facial key points. We tested the performance against manual annotation in 164 videos from 15 participants. The system can count bites with 79% accuracy when annotation is available, and 71.4% when annotation is unavailable. The system showed consistent performance across varying food textures. Eating behavior researchers can use this automated and objective system to replace manual bite count annotation, provided the system's error is acceptable for the purpose of their study. Utilizing our approach enables real-time bite counting, thereby promoting interventions for healthy eating behaviors. Future studies in this area should explore rule-based systems and machine learning methods with 3D facial key points to extend the automated analysis to other eating events while providing accuracy, interpretability, generalizability, and low computational requirements.
饮食行为是营养摄入的关键因素,在饮食失调和肥胖的发展中起着重要作用。从视频记录中检测饮食行为事件(即咬和咀嚼)的标准方法依赖于人工标注,缺乏客观评估和标准化。然而,饮食过程的视频记录为自动化提供了一种非侵入性且可扩展的数据源。在此,我们提出一种基于规则的系统,用于根据具有468个3D面部关键点的视频记录自动计数咬的次数。我们在来自15名参与者的164个视频中针对人工标注测试了该系统的性能。当有标注时,该系统计数咬的次数的准确率为79%,当没有标注时为71.4%。该系统在不同食物质地情况下表现出一致的性能。饮食行为研究人员可以使用这个自动化且客观的系统来取代人工咬数标注,前提是该系统的误差对于他们的研究目的是可接受的。利用我们的方法能够进行实时咬数计数,从而促进对健康饮食行为的干预。该领域未来的研究应探索基于规则的系统和使用3D面部关键点的机器学习方法,以将自动化分析扩展到其他饮食事件,同时提供准确性、可解释性、通用性和低计算要求。