文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

氢疗法通过抑制核因子κB信号通路促进放射性肺损伤中巨噬细胞向M2亚型极化。

Hydrogen therapy promotes macrophage polarization to the M2 subtype in radiation lung injury by inhibiting the NF-κB signalling pathway.

作者信息

Gao Xue, Niu Shiying, Li Lulu, Zhang Xiaoyue, Cao Xuetao, Zhang Xinhui, Pan Wentao, Sun Meili, Zhao Guoli, Zheng Xuezhen, Song Guohua, Zhang Yueying

机构信息

Department of Pathophysiology, School of Clinical and Basic Medicine, Shandong First Medical University, China.

Department of Pathology, The First Affiliated Hospital of Shandong First Medical University, China.

出版信息

Heliyon. 2024 May 11;10(10):e30902. doi: 10.1016/j.heliyon.2024.e30902. eCollection 2024 May 30.


DOI:10.1016/j.heliyon.2024.e30902
PMID:38826750
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11141264/
Abstract

BACKGROUND: Radiotherapy has become a standard treatment for chest tumors, but a common complication of radiotherapy is radiation lung injury. Currently, there is still a lack of effective treatment for radiation lung injury. METHODS: A mouse model of radioactive lung injury (RILI) was constructed and then treated with different cycles of hydrogen inhalation. Lung function tests were performed to detect changes in lung function.HE staining was used to detect pathological changes in lung tissue. Immunofluorescence staining was used to detect the polarization of macrophages in lung tissue. Immunohistochemistry was used to detect changes in cytokine expression in lung tissues. Western Blot was used to detect the expression of proteins related to the NF-κB signalling pathway. RESULTS: Lung function test results showed that lung function decreased in the model group and improved in the treatment group.HE staining showed that inflammatory response was evident in the model group and decreased in the treatment group. Immunohistochemistry results showed that the expression of pro-inflammatory factors was significantly higher in the model group, and the expression of pro-inflammatory factors was significantly higher in the treatment group. The expression of pro-inflammatory factors in the treatment group was significantly lower than that in the model group, and the expression of anti-inflammatory factors in the treatment group was higher than that in the model group. Immunofluorescence showed that the expression of M1 subtype macrophages was up-regulated in the model group and down-regulated in the treatment group. The expression of M2 subtype macrophages was up-regulated in the treatment group relative to the model group. Western Blot showed that P-NF-κB p65/NF-κB p65 was significantly increased in the model group, and P-NF-κB p65/NF-κB p65 was decreased in the treatment group. CONCLUSION: Hydrogen therapy promotes macrophage polarization from M1 to M2 subtypes by inhibiting the NF-κB signalling pathway, thereby attenuating the inflammatory response to radiation lung injury.

摘要

背景:放射治疗已成为胸部肿瘤的标准治疗方法,但放射性肺损伤是放射治疗的常见并发症。目前,对于放射性肺损伤仍缺乏有效的治疗方法。 方法:构建放射性肺损伤(RILI)小鼠模型,然后用不同周期的氢气吸入进行治疗。进行肺功能测试以检测肺功能变化。采用苏木精-伊红(HE)染色检测肺组织的病理变化。采用免疫荧光染色检测肺组织中巨噬细胞的极化情况。采用免疫组织化学检测肺组织中细胞因子表达的变化。采用蛋白质印迹法检测与核因子κB(NF-κB)信号通路相关蛋白的表达。 结果:肺功能测试结果显示,模型组肺功能下降,治疗组肺功能改善。HE染色显示,模型组炎症反应明显,治疗组炎症反应减轻。免疫组织化学结果显示,模型组促炎因子表达显著升高,治疗组促炎因子表达显著降低,且治疗组抗炎因子表达高于模型组。免疫荧光显示,模型组M1亚型巨噬细胞表达上调,治疗组下调。与模型组相比,治疗组M2亚型巨噬细胞表达上调。蛋白质印迹法显示,模型组磷酸化核因子κB p65/核因子κB p65显著升高,治疗组降低。 结论:氢气疗法通过抑制NF-κB信号通路促进巨噬细胞从M1亚型向M2亚型极化,从而减轻放射性肺损伤的炎症反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/5fe85a8c916c/mmcfigs12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/1577a6769422/gr1a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/654f395ece18/gr2a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/f187bff9fc76/gr3a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/9ab3a4808f3f/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/ee268619b9f5/mmcfigs1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/9f4a88f5e0da/mmcfigs2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/d86fabd55c80/mmcfigs3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/397aa15efb9c/mmcfigs4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/af6d2371aa80/mmcfigs5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/31c7284b3f49/mmcfigs6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/02439c4008ca/mmcfigs7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/e44107b9a29c/mmcfigs8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/a20303a66127/mmcfigs9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/7256d7d02f13/mmcfigs10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/56c802f11a15/mmcfigs11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/5fe85a8c916c/mmcfigs12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/1577a6769422/gr1a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/654f395ece18/gr2a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/f187bff9fc76/gr3a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/9ab3a4808f3f/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/ee268619b9f5/mmcfigs1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/9f4a88f5e0da/mmcfigs2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/d86fabd55c80/mmcfigs3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/397aa15efb9c/mmcfigs4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/af6d2371aa80/mmcfigs5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/31c7284b3f49/mmcfigs6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/02439c4008ca/mmcfigs7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/e44107b9a29c/mmcfigs8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/a20303a66127/mmcfigs9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/7256d7d02f13/mmcfigs10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/56c802f11a15/mmcfigs11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af5/11141264/5fe85a8c916c/mmcfigs12.jpg

相似文献

[1]
Hydrogen therapy promotes macrophage polarization to the M2 subtype in radiation lung injury by inhibiting the NF-κB signalling pathway.

Heliyon. 2024-5-11

[2]
Syringic acid attenuates acute lung injury by modulating macrophage polarization in LPS-induced mice.

Phytomedicine. 2024-7

[3]
Enoxaparin sodium bone cement plays an anti-inflammatory immunomodulatory role by inducing the polarization of M2 macrophages.

J Orthop Surg Res. 2023-5-23

[4]
Overexpressing six-transmembrane protein of prostate 2 (STAMP2) alleviates sepsis-induced acute lung injury probably by hindering M1 macrophage polarization via the NF-κB pathway.

Folia Histochem Cytobiol. 2023

[5]
Glaucocalyxin B inhibits cartilage inflammatory injury in rheumatoid arthritis by regulating M1 polarization of synovial macrophages through NF-κB pathway.

Aging (Albany NY). 2021-9-27

[6]
[Mechanism of lung and intestine combination therapy in treatment of acute lung injury by inhibiting inflammatory response based on NF-κB/NLRP3 signaling pathway and alveolar macrophage activation].

Zhongguo Zhong Yao Za Zhi. 2022-1

[7]
Hydrogen Promotes the M1 Macrophage Conversion During the Polarization of Macrophages in Necrotizing Enterocolitis.

Front Pediatr. 2021-11-17

[8]
Polygonatum Polysaccharide Regulates Macrophage Polarization and Improves LPS-Induced Acute Lung Injury through TLR4-MAPK/NF-B Pathway.

Can Respir J. 2022

[9]
[Proanthocyanidins alleviate lipopolysaccharide-induced inflammatory response by up-regulating SIRT1 expression and inhibiting NF-κB pathway in mouse RAW264.7 macrophages].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2023-10

[10]
Tetrahydropalmatine induces the polarization of M1 macrophages to M2 to relieve limb ischemia-reperfusion-induced lung injury via inhibiting the TLR4/NF-κB/NLRP3 signaling pathway.

Drug Dev Res. 2022-9

引用本文的文献

[1]
Molecular Hydrogen Capsule Therapy for Primary Biliary Cholangitis With Elevated IgG4: A Case Report on Immune Marker Normalization.

In Vivo. 2025

[2]
Hydrogen: an advanced and safest gas option for cancer treatment.

Med Gas Res. 2025-6-1

本文引用的文献

[1]
Hydrogen Regulates Ulcerative Colitis by Affecting the Intestinal Redox Environment.

J Inflamm Res. 2024-2-12

[2]
Exploring the polarization of M1 and M2 macrophages in the context of skin diseases.

Mol Biol Rep. 2024-2-1

[3]
Epithelial Responses in Radiation-Induced Lung Injury (RILI) Allow Chronic Inflammation and Fibrogenesis.

Radiat Res. 2023-5-1

[4]
Renin-angiotensin system inhibitors mitigate radiation pneumonitis by activating ACE2-angiotensin-(1-7) axis via NF-κB/MAPK pathway.

Sci Rep. 2023-5-23

[5]
Immunomodulatory role of azithromycin: Potential applications to radiation-induced lung injury.

Front Oncol. 2023-3-8

[6]
High Concentration Hydrogen Mitigates Sepsis-Induced Acute Lung Injury in Mice by Alleviating Mitochondrial Fission and Dysfunction.

J Pers Med. 2023-1-29

[7]
Effects of molecular hydrogen supplementation on fatigue and aerobic capacity in healthy adults: A systematic review and meta-analysis.

Front Nutr. 2023-2-2

[8]
Effects of hydrogen-rich saline in neuroinflammation and mitochondrial dysfunction in rat model of sepsis-associated encephalopathy.

J Transl Med. 2022-11-26

[9]
Abrocitinib Attenuates Microglia-Mediated Neuroinflammation after Traumatic Brain Injury via Inhibiting the JAK1/STAT1/NF-κB Pathway.

Cells. 2022-11-13

[10]
Epigenetic regulation in radiation-induced pulmonary fibrosis.

Int J Radiat Biol. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索