Gnoli Luca, Benini Mattia, Del Conte Corrado, Riminucci Alberto, Rakshit Rajib K, Singh Manju, Sanna Samuele, Yadav Roshni, Lin Ko-Wei, Mezzi Alessio, Achilli Simona, Molteni Elena, Marino Marco, Fratesi Guido, Dediu Valentin, Bergenti Ilaria
CNR ISMN, Via Gobetti 101, 40129 Bologna, Italy.
Department of Physics and Astronomy "A. Righi", University of Bologna, Via Berti-Pichat 6/2, I-40127 Bologna, Italy.
ACS Appl Electron Mater. 2024 May 10;6(5):3138-3146. doi: 10.1021/acsaelm.3c01599. eCollection 2024 May 28.
Antiferromagnets are a class of magnetic materials of great interest in spintronic devices because of their stability and ultrafast dynamics. When interfaced with an organic molecular layer, antiferromagnetic (AF) films are expected to form a spinterface that can allow fine control of specific AF properties. In this paper, we investigate spinterface effects on CoO, an AF oxide. To access the magnetic state of the antiferromagnet, we couple it to a ferromagnetic Co film via an exchange bias (EB) effect. In this way, the formation of a spinterface is detected through changes induced on the CoO/Co EB system. We demonstrate that C and Gaq adsorption on CoO shifts its blocking temperature; in turn, an increase in both the EB fields and the coercivities is observed on the EB-coupled Co layer. Ab initio calculations for the CoO/C interface indicate that the molecular adsorption is responsible for a charge redistribution on the CoO layer that alters the occupation of the d orbitals of Co atoms and, to a smaller extent, the p orbitals of oxygen. As a result, the AF coupling between Co atoms in the CoO is enhanced. Considering the granular nature of CoO, a larger AF stability upon molecular adsorption is then associated with a larger number of AF grains that are stable upon reversal of the Co layer.
反铁磁体是一类在自旋电子器件中极具吸引力的磁性材料,因其具有稳定性和超快动力学特性。当与有机分子层接触时,反铁磁(AF)薄膜有望形成一个自旋界面,从而实现对特定AF特性的精细控制。在本文中,我们研究了自旋界面对AF氧化物CoO的影响。为了获取反铁磁体的磁态,我们通过交换偏置(EB)效应将其与铁磁Co薄膜耦合。通过这种方式,通过CoO/Co EB系统上的变化来检测自旋界面的形成。我们证明,CoO上的C和Gaq吸附会改变其阻塞温度;相应地,在EB耦合的Co层上观察到EB场和矫顽力都有所增加。对CoO/C界面的从头算计算表明,分子吸附导致CoO层上的电荷重新分布,这改变了Co原子d轨道的占据情况,并在较小程度上改变了氧原子p轨道的占据情况。结果,CoO中Co原子之间的AF耦合增强。考虑到CoO的颗粒性质,分子吸附时更大的AF稳定性与Co层反转时更多稳定的AF晶粒相关。