Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA.
Med Phys. 2024 Aug;51(8):5563-5571. doi: 10.1002/mp.17186. Epub 2024 Jun 3.
Electron beams are used at extended distances ranging between 300 to 700 cm to uniformly cover the entirety of the patient's skin for total skin electron therapy (TSET). Even with electron beams utilizing the high dose rate total skin electron (HDTSe) mode from the Varian 23iX or TrueBeam accelerators, the dose rate is only 2500 cGy/min at source-to-surface distance (SSD) = 100 cm. At extended distances, the decrease in dose rate leads to long beam delivery times that can limit or even prevent the use of the treatment for patients who, in their weakened condition, may be unable to stand on their own for extended periods of time. Previously, to increase dose rate, a customized 6 MeV electron beam was created by removing the x-ray target, flattening filter, beam monitor chamber, and so forth. from the beam path (Chen, et at IJROBP 59, 2004) for TSET. Using this scattering-foil free (SFF) electron beam requires the treatment distance be extended to 700 cm to achieve dose uniformity from the single beam. This room size requirement has limited the widespread use of the 6 MeV-SFF beam.
This study explores an application of a dual-field technique with a 6 MeV-SFF beam to provide broad and uniform electron fields to reduce the treatment distances in order to overcome treatment room size limitations.
The EGSnrc system was used to generate incident beams. Gantry angles between 6 MeV-SFF dual-fields were optimized to achieve the similar patient skin dose distribution resulting from a standard 6 MeV-HDTSe dual-field configuration. The patient skin dose comparisons were performed based on the patient treatment setup geometries using dose-volume-histograms.
Similar dose coverage can be achieved between 6 MeV-SFF and 6 MeV-HDTSe beams by reducing gantry angles between dual-field geometries by 8° and 7° at treatment distances of 400 and 500 cm, respectively. To achieve 95% mean dose to the first 5 mm of skin depth in the torso area, the mean dose to depths of 5-10 mm and 10-15 mm below the skin surface was 74% (74%) and 49% (50%) of the prescribed dose when using 6 MeV-SFF (6 MeV-HDTSe) beam, respectively.
The 6 MeV-SFF electron beam is feasible to provide similar TSET skin dose coverage at SSD ≥ 400 cm using a dual-field technique. The dose rate of the 6 MeV-SFF beam is about 4 times that of current available 6 MeV-HDTSe beams at treatment distances of 400-500 cm, which significantly shortens the treatment beam-on time and makes TSET available to patients in weakened conditions.
电子束在 300 至 700 厘米的延长距离处使用,以均匀覆盖患者皮肤的全部面积,进行全身皮肤电子治疗(TSET)。即使使用瓦里安 23iX 或 TrueBeam 加速器中的高能率全皮肤电子(HDTSe)模式的电子束,在源皮距(SSD)= 100 厘米处,剂量率也仅为 2500 cGy/min。在延长的距离处,剂量率的降低导致束流输送时间延长,这可能会限制甚至阻止对虚弱的患者进行治疗,因为这些患者可能无法长时间独自站立。以前,为了提高剂量率,通过从束流路径中去除 X 射线靶、平滤器、束流监测室等,创建了定制的 6 MeV 电子束,用于 TSET。使用这种无散射箔(SFF)电子束需要将治疗距离延长到 700 厘米,以实现单束的剂量均匀性。这种房间尺寸的要求限制了 6 MeV-SFF 束的广泛应用。
本研究探索了一种使用 6 MeV-SFF 束的双场技术的应用,以提供广泛且均匀的电子场,从而缩短治疗距离,以克服治疗室尺寸的限制。
使用 EGSnrc 系统生成入射束。优化了 6 MeV-SFF 双场之间的旋转角度,以实现与标准 6 MeV-HDTSe 双场配置相同的患者皮肤剂量分布。根据患者治疗设置的几何形状,使用剂量-体积-直方图进行患者皮肤剂量比较。
在治疗距离为 400 和 500 厘米处,通过将双场几何形状之间的旋转角度分别减小 8°和 7°,可以在 6 MeV-SFF 和 6 MeV-HDTSe 束之间实现相似的皮肤覆盖。为了在躯干区域达到 5 毫米皮肤深度的第一 5 毫米的 95%平均剂量,当使用 6 MeV-SFF(6 MeV-HDTSe)束时,皮肤下 5-10 毫米和 10-15 毫米深度的平均剂量分别为规定剂量的 74%(74%)和 49%(50%)。
6 MeV-SFF 电子束可通过双场技术在 SSD≥400 厘米处提供相似的 TSET 皮肤剂量覆盖。在 400-500 厘米的治疗距离处,6 MeV-SFF 束的剂量率约为当前可用的 6 MeV-HDTSe 束的 4 倍,这显著缩短了治疗束流照射时间,使 TSET 可用于虚弱的患者。