Wang Shuai, Yang Xue
School of Mathematics and Statistics, Changchun University of Science and Technology, Changchun 130000, China.
College of Mathematics, Jilin University, Changchun 130000, China.
Chaos. 2024 Jun 1;34(6). doi: 10.1063/5.0212482.
In this paper, we investigate synchronous solutions of coupled van der Pol oscillator systems with multiple coupling modes using the theory of rotating periodic solutions. Multiple coupling modes refer to two or three types of coupling modes in van der Pol oscillator networks, namely, position, velocity, and acceleration. Rotating periodic solutions can represent various types of synchronous solutions corresponding to different phase differences of coupled oscillators. When matrices representing the topology of different coupling modes have symmetry, the overall symmetry of the oscillator system depends on the intersection of the symmetries of the different topologies, determining the type of synchronous solutions for the coupled oscillator network. When matrices representing the topology of different coupling modes lack symmetry, if the adjacency matrices representing different coupling modes can be simplified into structurally identical quotient graphs (where weights can be proportional) through the same external equitable partition, the symmetry of the quotient graph determines the synchronization type of the original system. All these results are consistent with multi-layer networks where connections between different layers are one-to-one.
在本文中,我们运用旋转周期解理论研究具有多种耦合模式的耦合范德波尔振子系统的同步解。多种耦合模式是指范德波尔振子网络中的两种或三种耦合模式,即位置、速度和加速度。旋转周期解可以表示对应于耦合振子不同相位差的各种同步解。当表示不同耦合模式拓扑结构的矩阵具有对称性时,振子系统的整体对称性取决于不同拓扑结构对称性的交集,从而确定耦合振子网络同步解的类型。当表示不同耦合模式拓扑结构的矩阵缺乏对称性时,如果通过相同的外部公平划分可以将表示不同耦合模式的邻接矩阵简化为结构相同的商图(权重可以成比例),则商图的对称性决定原始系统的同步类型。所有这些结果都与不同层之间连接为一对一的多层网络一致。