Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, N2L 3G1, Canada.
Institute of Chemistry, Henan Academy of Sciences, Jinshui District, 56 Hongzhuan Road, Zhengzhou, Henan, 450002, China.
Macromol Rapid Commun. 2024 Sep;45(17):e2400275. doi: 10.1002/marc.202400275. Epub 2024 Jun 12.
The advent of nonfullerene acceptors (NFAs) has greatly improved the photovoltaic performance of organic solar cells (OSCs). However, to compete with other solar cell technologies, there is a pressing need for accelerated research and development of improved NFAs as well as their compatible wide bandgap polymer donors. In this study, a novel electron-withdrawing building block, succinimide-substituted thiophene (TS), is utilized for the first time to synthesize three wide bandgap polymer donors: PBDT-TS-C5, PBDT-TSBT-C12, and PBDTF-TSBT-C16. These polymers exhibit complementary bandgaps for efficient sunlight harvesting and suitable frontier energy levels for exciton dissociation when paired with the extensively studied NFA, Y6. Among these donors, PBDTF-TSBT-C16 demonstrates the highest hole mobility and a relatively low highest occupied molecular orbital (HOMO) energy level, attributed to the incorporation of thiophene spacers and electron-withdrawing fluorine substituents. OSC devices based on the blend of PBDTF-TSBT-C16:Y6 achieve the highest power conversion efficiency of 13.21%, with a short circuit current density (J) of 26.83 mA cm, an open circuit voltage (V) of 0.80 V, and a fill factor of 0.62. Notably, the V × J product reaches 21.46 mW cm, demonstrating the potential of TS as an electron acceptor building block for the development of high-performance wide bandgap polymer donors in OSCs.
非富勒烯受体(NFAs)的出现极大地提高了有机太阳能电池(OSCs)的光伏性能。然而,为了与其他太阳能电池技术竞争,迫切需要加速研究和开发改进的 NFAs 及其兼容的宽带隙聚合物给体。在这项研究中,首次使用了一种新型的电子受主构建块——琥珀酰亚胺取代的噻吩(TS),合成了三种宽带隙聚合物给体:PBDT-TS-C5、PBDT-TSBT-C12 和 PBDTF-TSBT-C16。这些聚合物具有互补的能带隙,可有效利用太阳光,并与广泛研究的 NFA Y6 配对时具有合适的前沿能级,有利于激子解离。在这些给体中,PBDTF-TSBT-C16 表现出最高的空穴迁移率和相对较低的最高占据分子轨道(HOMO)能级,这归因于噻吩间隔基和吸电子氟取代基的引入。基于 PBDTF-TSBT-C16:Y6 共混物的 OSC 器件实现了最高的功率转换效率为 13.21%,短路电流密度(J)为 26.83 mA cm,开路电压(V)为 0.80 V,填充因子为 0.62。值得注意的是,V × J 乘积达到 21.46 mW cm,这表明 TS 作为电子受体构建块在开发高性能宽带隙聚合物给体方面具有潜力,可用于 OSCs。