Suppr超能文献

与谷胱甘肽缺乏症小鼠模型中慢性氧化应激相关的肝脏表观基因组特征。

Liver epigenomic signature associated with chronic oxidative stress in a mouse model of glutathione deficiency.

机构信息

Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA.

Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA.

出版信息

Chem Biol Interact. 2024 Aug 1;398:111093. doi: 10.1016/j.cbi.2024.111093. Epub 2024 Jun 1.

Abstract

Oxidative stress is intimately involved in the pathogenesis of fatty liver disease (FLD). A major factor contributing to oxidative stress is the depletion of the ubiquitous antioxidant glutathione (GSH). Unexpectedly, chronic GSH deficiency renders glutamate-cysteine ligase modifier subunit (Gclm)-null mice protected from fatty liver injuries. Epigenetic regulation serves as an important cellular mechanism in modulating gene expression and disease outcome in FLD, although it is not well understood how systemic redox imbalance modifies the liver epigenome. In the current study, utilizing the Gclm-null mouse model, we aimed to elucidate redox-associated epigenomic changes and their implications in liver stress response. We performed high-throughput array-based DNA methylation profiling (MeDIP array) in 22,327 gene promoter regions (from -1300 bp to +500 bp of the Transcription Start Sites) in the liver and peripheral blood cells. Results from the MeDIP array demonstrate that, although global methylation enrichment in gene promoters did not change, low GSH resulted in prevalent demethylation at the individual promoter level. Such an effect likely attributed to a declined availability of the methyl donor S-adenosyl methionine (SAM) in Gclm-null liver. Functional enrichment analysis of liver target genes is suggestive of a potential role of epigenetic mechanisms in promoting cellular survival and lipid homeostasis in Gclm-null liver. In comparison with the liver tissue, MeDIP array in peripheral blood cells revealed a panel of 19 gene promoters that are candidate circulating biomarkers for hepatic epigenomic changes associated with chronic GSH deficiency. Collectively, our results provided new insights into the in vivo interplay between liver redox state and DNA methylation status. The current study laid the groundwork for future epigenetic/epigenomic investigations in experimental settings or human populations under conditions of liver oxidative stress induced by environmental or dietary challenges.

摘要

氧化应激与脂肪肝疾病 (FLD) 的发病机制密切相关。导致氧化应激的一个主要因素是普遍存在的抗氧化剂谷胱甘肽 (GSH) 的耗竭。出乎意料的是,慢性 GSH 缺乏使谷氨酸半胱氨酸连接酶修饰亚基 (Gclm)-null 小鼠免受脂肪肝损伤。表观遗传调控是调节 FLD 中基因表达和疾病结果的重要细胞机制,尽管尚不清楚全身氧化还原失衡如何修饰肝表观基因组。在本研究中,我们利用 Gclm-null 小鼠模型,旨在阐明与氧化还原相关的表观基因组变化及其在肝脏应激反应中的意义。我们在肝脏和外周血细胞中 22327 个基因启动子区域(转录起始位点的-1300 bp 到+500 bp)进行了高通量基于阵列的 DNA 甲基化谱分析(MeDIP 阵列)。MeDIP 阵列的结果表明,尽管基因启动子中的整体甲基化富集没有改变,但低 GSH 导致单个启动子水平普遍去甲基化。这种影响可能归因于 Gclm-null 肝脏中甲基供体 S-腺苷甲硫氨酸 (SAM) 的可用性下降。肝脏靶基因的功能富集分析表明,表观遗传机制在促进 Gclm-null 肝脏中的细胞存活和脂质稳态方面可能发挥作用。与肝组织相比,外周血细胞中的 MeDIP 阵列揭示了一组 19 个基因启动子,它们可能是与慢性 GSH 缺乏相关的肝表观基因组变化的候选循环生物标志物。总的来说,我们的研究结果为体内肝脏氧化还原状态和 DNA 甲基化状态之间的相互作用提供了新的见解。本研究为未来在环境或饮食挑战引起的肝脏氧化应激的实验环境或人类群体中进行表观遗传学/表观基因组学研究奠定了基础。

相似文献

1
Liver epigenomic signature associated with chronic oxidative stress in a mouse model of glutathione deficiency.
Chem Biol Interact. 2024 Aug 1;398:111093. doi: 10.1016/j.cbi.2024.111093. Epub 2024 Jun 1.
2
Stage-specific DNA methylation dynamics in mammalian heart development.
Epigenomics. 2025 Apr;17(5):359-371. doi: 10.1080/17501911.2025.2467024. Epub 2025 Feb 21.
5
Liver matrin-3 protects mice against hepatic steatosis and stress response via constitutive androstane receptor.
Mol Metab. 2024 Aug;86:101977. doi: 10.1016/j.molmet.2024.101977. Epub 2024 Jun 25.
6
IGF2 Is Up-regulated by Epigenetic Mechanisms in Hepatocellular Carcinomas and Is an Actionable Oncogene Product in Experimental Models.
Gastroenterology. 2016 Dec;151(6):1192-1205. doi: 10.1053/j.gastro.2016.09.001. Epub 2016 Sep 7.
7
[Epigenetics' implication in autism spectrum disorders: A review].
Encephale. 2017 Aug;43(4):374-381. doi: 10.1016/j.encep.2016.07.007. Epub 2016 Sep 28.
8
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.

引用本文的文献

2
Mechanisms and rationales of SAM homeostasis.
Trends Biochem Sci. 2025 Mar;50(3):242-254. doi: 10.1016/j.tibs.2024.12.009. Epub 2025 Jan 15.

本文引用的文献

1
Exogenous glutathione can alleviate chromium toxicity in kenaf by activating antioxidant system and regulating DNA methylation.
Chemosphere. 2023 Oct;337:139305. doi: 10.1016/j.chemosphere.2023.139305. Epub 2023 Jun 24.
2
Role of ACSL5 in fatty acid metabolism.
Heliyon. 2023 Jan 31;9(2):e13316. doi: 10.1016/j.heliyon.2023.e13316. eCollection 2023 Feb.
3
Cytoplasmic SIRT6-mediated ACSL5 deacetylation impedes nonalcoholic fatty liver disease by facilitating hepatic fatty acid oxidation.
Mol Cell. 2022 Nov 3;82(21):4099-4115.e9. doi: 10.1016/j.molcel.2022.09.018. Epub 2022 Oct 7.
4
DNAJA1 Stabilizes EF1A1 to Promote Cell Proliferation and Metastasis of Liver Cancer Mediated by miR-205-5p.
J Oncol. 2022 May 9;2022:2292481. doi: 10.1155/2022/2292481. eCollection 2022.
6
Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease.
Free Radic Biol Med. 2020 May 20;152:116-141. doi: 10.1016/j.freeradbiomed.2020.02.025. Epub 2020 Mar 8.
7
Glutathione deficiency-elicited reprogramming of hepatic metabolism protects against alcohol-induced steatosis.
Free Radic Biol Med. 2019 Nov 1;143:127-139. doi: 10.1016/j.freeradbiomed.2019.07.025. Epub 2019 Jul 24.
8
Hepatic metabolic adaptation in a murine model of glutathione deficiency.
Chem Biol Interact. 2019 Apr 25;303:1-6. doi: 10.1016/j.cbi.2019.02.015. Epub 2019 Feb 20.
9
Glutathione and Transsulfuration in Alcohol-Associated Tissue Injury and Carcinogenesis.
Adv Exp Med Biol. 2018;1032:37-53. doi: 10.1007/978-3-319-98788-0_3.
10
The evolution of CpG density and lifespan in conserved primate and mammalian promoters.
Aging (Albany NY). 2018 Apr 14;10(4):561-572. doi: 10.18632/aging.101413.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验