Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA.
Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, 06510, USA.
Chem Biol Interact. 2024 Aug 1;398:111093. doi: 10.1016/j.cbi.2024.111093. Epub 2024 Jun 1.
Oxidative stress is intimately involved in the pathogenesis of fatty liver disease (FLD). A major factor contributing to oxidative stress is the depletion of the ubiquitous antioxidant glutathione (GSH). Unexpectedly, chronic GSH deficiency renders glutamate-cysteine ligase modifier subunit (Gclm)-null mice protected from fatty liver injuries. Epigenetic regulation serves as an important cellular mechanism in modulating gene expression and disease outcome in FLD, although it is not well understood how systemic redox imbalance modifies the liver epigenome. In the current study, utilizing the Gclm-null mouse model, we aimed to elucidate redox-associated epigenomic changes and their implications in liver stress response. We performed high-throughput array-based DNA methylation profiling (MeDIP array) in 22,327 gene promoter regions (from -1300 bp to +500 bp of the Transcription Start Sites) in the liver and peripheral blood cells. Results from the MeDIP array demonstrate that, although global methylation enrichment in gene promoters did not change, low GSH resulted in prevalent demethylation at the individual promoter level. Such an effect likely attributed to a declined availability of the methyl donor S-adenosyl methionine (SAM) in Gclm-null liver. Functional enrichment analysis of liver target genes is suggestive of a potential role of epigenetic mechanisms in promoting cellular survival and lipid homeostasis in Gclm-null liver. In comparison with the liver tissue, MeDIP array in peripheral blood cells revealed a panel of 19 gene promoters that are candidate circulating biomarkers for hepatic epigenomic changes associated with chronic GSH deficiency. Collectively, our results provided new insights into the in vivo interplay between liver redox state and DNA methylation status. The current study laid the groundwork for future epigenetic/epigenomic investigations in experimental settings or human populations under conditions of liver oxidative stress induced by environmental or dietary challenges.
氧化应激与脂肪肝疾病 (FLD) 的发病机制密切相关。导致氧化应激的一个主要因素是普遍存在的抗氧化剂谷胱甘肽 (GSH) 的耗竭。出乎意料的是,慢性 GSH 缺乏使谷氨酸半胱氨酸连接酶修饰亚基 (Gclm)-null 小鼠免受脂肪肝损伤。表观遗传调控是调节 FLD 中基因表达和疾病结果的重要细胞机制,尽管尚不清楚全身氧化还原失衡如何修饰肝表观基因组。在本研究中,我们利用 Gclm-null 小鼠模型,旨在阐明与氧化还原相关的表观基因组变化及其在肝脏应激反应中的意义。我们在肝脏和外周血细胞中 22327 个基因启动子区域(转录起始位点的-1300 bp 到+500 bp)进行了高通量基于阵列的 DNA 甲基化谱分析(MeDIP 阵列)。MeDIP 阵列的结果表明,尽管基因启动子中的整体甲基化富集没有改变,但低 GSH 导致单个启动子水平普遍去甲基化。这种影响可能归因于 Gclm-null 肝脏中甲基供体 S-腺苷甲硫氨酸 (SAM) 的可用性下降。肝脏靶基因的功能富集分析表明,表观遗传机制在促进 Gclm-null 肝脏中的细胞存活和脂质稳态方面可能发挥作用。与肝组织相比,外周血细胞中的 MeDIP 阵列揭示了一组 19 个基因启动子,它们可能是与慢性 GSH 缺乏相关的肝表观基因组变化的候选循环生物标志物。总的来说,我们的研究结果为体内肝脏氧化还原状态和 DNA 甲基化状态之间的相互作用提供了新的见解。本研究为未来在环境或饮食挑战引起的肝脏氧化应激的实验环境或人类群体中进行表观遗传学/表观基因组学研究奠定了基础。