Suppr超能文献

基于深度学习的大麦病害量化以实现可持续作物生产

Deep Learning-Based Barley Disease Quantification for Sustainable Crop Production.

作者信息

Bouhouch Yassine, Esmaeel Qassim, Richet Nicolas, Barka Essaïd Aït, Backes Aurélie, Steffenel Luiz Angelo, Hafidi Majida, Jacquard Cédric, Sanchez Lisa

机构信息

Université de Reims Champagne-Ardenne, Unité de recherche Résistance Induite et Bioprotection des Plantes (RIBP), EA 4707 USC INRAE 1488, Reims, France.

Faculté des sciences, Université Moulay Ismail, Laboratoire de biotechnologie végétale et de biologie moléculaire, B.P. 11201, Zitoune, Meknès, Maroc.

出版信息

Phytopathology. 2024 Sep;114(9):2045-2054. doi: 10.1094/PHYTO-02-24-0056-KC. Epub 2024 Sep 13.

Abstract

Net blotch disease caused by is a major fungal disease that affects barley () plants and can result in significant crop losses. In this study, we developed a deep learning model to quantify net blotch disease symptoms on different days postinfection on seedling leaves using Cascade R-CNN (region-based convolutional neural network) and U-Net (a convolutional neural network) architectures. We used a dataset of barley leaf images with annotations of net blotch disease to train and evaluate the model. The model achieved an accuracy of 95% for Cascade R-CNN in net blotch disease detection and a Jaccard index score of 0.99, indicating high accuracy in disease quantification and location. The combination of Cascade R-CNN and U-Net architectures improved the detection of small and irregularly shaped lesions in the images at 4 days postinfection, leading to better disease quantification. To validate the model developed, we compared the results obtained by automated measurement with a classical method (necrosis diameter measurement) and a pathogen detection by real-time PCR. The proposed deep learning model could be used in automated systems for disease quantification and to screen the efficacy of potential biocontrol agents to protect against disease.

摘要

由[病原体名称未给出]引起的网斑病是一种影响大麦([大麦学名未给出])植株的主要真菌病害,可导致严重的作物损失。在本研究中,我们使用级联区域卷积神经网络(Cascade R-CNN)和U-Net(一种卷积神经网络)架构开发了一个深度学习模型,用于量化感染后不同天数幼苗叶片上的网斑病症状。我们使用了一个带有网斑病注释的大麦叶片图像数据集来训练和评估该模型。该模型在网斑病检测中,级联区域卷积神经网络的准确率达到了95%,杰卡德指数得分为0.99,表明在病害量化和定位方面具有较高的准确性。级联区域卷积神经网络和U-Net架构的结合提高了感染后4天图像中微小和形状不规则病斑的检测能力,从而实现了更好的病害量化。为了验证所开发的模型,我们将自动测量得到的结果与经典方法(坏死直径测量)以及通过实时聚合酶链反应进行的病原体检测结果进行了比较。所提出的深度学习模型可用于疾病量化的自动化系统,并用于筛选潜在生物防治剂预防疾病的效果评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验