文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Construction and validation of serum Metabolic Risk Score for early warning of malignancy in esophagus.

作者信息

Liu Mengfei, Tian Hongrui, Wang Minmin, Guo Chuanhai, Xu Ruiping, Li Fenglei, Liu Anxiang, Yang Haijun, Duan Liping, Shen Lin, Wu Qi, Liu Zhen, Liu Ying, Liu Fangfang, Pan Yaqi, Hu Zhe, Chen Huanyu, Cai Hong, He Zhonghu, Ke Yang

机构信息

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing 100142, China.

Department of Global Health, School of Public Health, Peking University, Beijing 100191, China.

出版信息

iScience. 2024 May 11;27(6):109965. doi: 10.1016/j.isci.2024.109965. eCollection 2024 Jun 21.


DOI:10.1016/j.isci.2024.109965
PMID:38832013
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11144720/
Abstract

Using noninvasive biomarkers to identify high-risk individuals prior to endoscopic examination is crucial for optimization of screening strategies for esophageal squamous cell carcinoma (ESCC). We conducted a nested case-control study based on two community-based screening cohorts to evaluate the warning value of serum metabolites for esophageal malignancy. The serum samples were collected at enrollment when the cases had not been diagnosed. We identified 74 differential metabolites and two prominent perturbed metabolic pathways, and constructed Metabolic Risk Score (MRS) based on 22 selected metabolic predictors. The MRS generated an area under the receiver operating characteristics curve (AUC) of 0.815. The model performed well for the within-1-year interval (AUC: 0.868) and 1-to-5-year interval (AUC: 0.845) from blood draw to diagnosis, but showed limited ability in predicting long-term cases (>5 years). In summary, the MRS could serve as a potential early warning and risk stratification tool for establishing a precision strategy of ESCC screening.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5254/11144720/42c5a3e3acb5/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5254/11144720/dd12cc1949d4/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5254/11144720/12247be61df9/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5254/11144720/1d8b80ef145b/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5254/11144720/aea68c16fa08/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5254/11144720/df338fdaf0c6/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5254/11144720/42c5a3e3acb5/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5254/11144720/dd12cc1949d4/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5254/11144720/12247be61df9/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5254/11144720/1d8b80ef145b/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5254/11144720/aea68c16fa08/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5254/11144720/df338fdaf0c6/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5254/11144720/42c5a3e3acb5/gr5.jpg

相似文献

[1]
Construction and validation of serum Metabolic Risk Score for early warning of malignancy in esophagus.

iScience. 2024-5-11

[2]
Untargeted serum metabolomics reveals potential biomarkers and metabolic pathways associated with the progression of gastroesophageal cancer.

BMC Cancer. 2023-12-15

[3]
A multi-platform metabolomics reveals possible biomarkers for the early-stage esophageal squamous cell carcinoma.

Anal Chim Acta. 2022-8-8

[4]
A Model To Identify Individuals at High Risk for Esophageal Squamous Cell Carcinoma and Precancerous Lesions in Regions of High Prevalence in China.

Clin Gastroenterol Hepatol. 2017-3-23

[5]
Serum Metabolomic Profiling Reveals Biomarkers for Early Detection and Prognosis of Esophageal Squamous Cell Carcinoma.

Front Oncol. 2022-1-28

[6]
Improved esophageal squamous cell carcinoma screening effectiveness by risk-stratified endoscopic screening: evidence from high-risk areas in China.

Cancer Commun (Lond). 2021-8

[7]
Untargeted metabolomics analysis of esophageal squamous cell cancer progression.

J Transl Med. 2022-3-14

[8]
Development and Validation of an Esophageal Squamous Cell Carcinoma Detection Model by Large-Scale MicroRNA Profiling.

JAMA Netw Open. 2019-5-3

[9]
Selection of high-risk individuals for esophageal cancer screening: A prediction model of esophageal squamous cell carcinoma based on a multicenter screening cohort in rural China.

Int J Cancer. 2021-1-15

[10]
Exploring potential biomarkers of early stage esophageal squamous cell carcinoma in pre- and post-operative serum metabolomic fingerprint spectrum using H-NMR method.

Am J Transl Res. 2019-2-15

引用本文的文献

[1]
Effect of risk-based screening for upper gastrointestinal cancers: a multi-center real-world study.

Br J Cancer. 2025-8-5

本文引用的文献

[1]
Challenge and future of cancer screening in China: Insights from esophageal cancer screening practice.

Chin J Cancer Res. 2023-12-30

[2]
A multi-platform metabolomics reveals possible biomarkers for the early-stage esophageal squamous cell carcinoma.

Anal Chim Acta. 2022-8-8

[3]
Update and validation of a diagnostic model to identify prevalent malignant lesions in esophagus in general population.

EClinicalMedicine. 2022-4-16

[4]
New Metabolic Alterations and A Predictive Marker Pipecolic Acid in Sera for Esophageal Squamous Cell Carcinoma.

Genomics Proteomics Bioinformatics. 2022-8

[5]
Untargeted metabolomics analysis of esophageal squamous cell cancer progression.

J Transl Med. 2022-3-14

[6]
Plasma Metabolomics Reveals Diagnostic Biomarkers and Risk Factors for Esophageal Squamous Cell Carcinoma.

Front Oncol. 2022-2-7

[7]
Serum Metabolomic Profiling Reveals Biomarkers for Early Detection and Prognosis of Esophageal Squamous Cell Carcinoma.

Front Oncol. 2022-1-28

[8]
Tumor-associated autoantibodies in ESCC screening: Detecting prevalent early-stage malignancy or predicting future cancer risk?

EBioMedicine. 2021-11

[9]
Plasma-metabolite-based machine learning is a promising diagnostic approach for esophageal squamous cell carcinoma investigation.

J Pharm Anal. 2021-8

[10]
MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights.

Nucleic Acids Res. 2021-7-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索