Suppr超能文献

纳米颗粒聚结过程中的潜热到显热转换动力学。

Latent-to-sensible heat conversion kinetics during nanoparticle coalescence.

作者信息

Ojha Abhilash, Tamadate Tomoya, Hogan Christopher J

机构信息

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.

Department of Frontier Engineering, Kanazawa University, Kanazawa, Japan.

出版信息

J Chem Phys. 2024 Jun 7;160(21). doi: 10.1063/5.0206634.

Abstract

Coagulational growth in an aerosol is a multistep process; first particles collide, and then they coalesce with one another. Coalescence kinetics have been investigated in numerous prior studies, largely through atomistic simulations of nanoclusters (102-104 atoms). However, with a few exceptions, they have either assumed the process is completely isothermal or is a constant energy process. During coalescence, there is the formation of new bonds, decreasing potential energy, and correspondingly increasing internal kinetic (thermal) energy. Internal kinetic energy evolution is dependent not only on coalescence kinetics but also on heat transfer to the surrounding gas. Here, we develop and test a model of internal kinetic energy evolution in collisionally formed nanoclusters in the presence of a background gas. We find that internal kinetic energy dynamics hinge upon a power law relationship describing latent-to-sensible heat release as well as a modified thermal accommodation coefficient. The model is tested against atomistic models of 1.5-3.0 nm embedded-atom gold nanocluster sintering in argon and helium environments. The model results are in excellent agreement with the simulation results for all tested conditions. Results show that nanocluster effective temperatures can increase by hundreds of Kelvin due to coalescence, but that the rise and re-equilibration of the internal kinetic energy is strongly dependent on the background gas environment. Interestingly, internal kinetic energy change kinetics are also found to be distinct from surface area change kinetics, suggesting that modeling coalescence heat release solely due to surface area change is inaccurate.

摘要

气溶胶中的凝聚生长是一个多步骤过程;首先粒子相互碰撞,然后彼此合并。合并动力学在众多先前的研究中已被探究,主要是通过对纳米团簇(102 - 104个原子)的原子模拟。然而,除了少数例外,这些研究要么假设该过程完全等温,要么是一个能量恒定的过程。在合并过程中,会形成新的键,势能降低,相应地内部动能(热能)增加。内部动能的演化不仅取决于合并动力学,还取决于向周围气体的热传递。在此,我们开发并测试了一个在背景气体存在下碰撞形成的纳米团簇内部动能演化模型。我们发现内部动能动力学取决于描述潜热到显热释放的幂律关系以及修正的热适应系数。该模型针对在氩气和氦气环境中1.5 - 3.0纳米嵌入原子金纳米团簇烧结的原子模型进行了测试。在所有测试条件下,模型结果与模拟结果都非常吻合。结果表明,由于合并,纳米团簇的有效温度可升高数百开尔文,但内部动能的升高和重新平衡强烈依赖于背景气体环境。有趣的是,还发现内部动能变化动力学与表面积变化动力学不同,这表明仅基于表面积变化来模拟合并热释放是不准确的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验