Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology Metabolism and Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
Center for Molecular Medicine-Cell Biology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands.
Cardiovasc Res. 2024 Sep 21;120(11):1253-1264. doi: 10.1093/cvr/cvae121.
Apolipoprotein B (APOB)-containing very LDL (VLDL) production, secretion, and clearance by hepatocytes is a central determinant of hepatic and circulating lipid levels. Impairment of any of the aforementioned processes is associated with the development of multiple diseases. Despite the discovery of genes and processes that govern hepatic VLDL metabolism, our understanding of the different mechanistic steps involved is far from complete. An impediment to these studies is the lack of tractable hepatocyte-based systems to interrogate and follow APOB in cells, which the current study addresses.
To facilitate the cellular study of VLDL metabolism, we generated human hepatic HepG2 and Huh-7 cell lines in which CRISPR/Cas9-based genome engineering was used to introduce the fluorescent protein mNeonGreen into the APOB gene locus. This results in the production of APOB100-mNeon that localizes predominantly to the endoplasmic reticulum (ER) and Golgi by immunofluorescence and electron microscopy imaging. The production and secretion of APOB100-mNeon can be quantitatively followed in medium over time and results in the production of lipoproteins that are taken up via the LDL receptor pathway. Importantly, the production and secretion of APOB-mNeon is sensitive to established pharmacological and physiological treatments and to genetic modifiers known to influence VLDL production in humans. As a showcase, we used HepG2-APOBmNeon cells to interrogate ER-associated degradation of APOB. The use of a dedicated sgRNA library targeting all established membrane-associated ER-resident E3 ubiquitin ligases led to the identification of SYNV1 as the E3 responsible for the degradation of poorly lipidated APOB in HepG2 cells.
In summary, the engineered cells reported here allow the study of hepatic VLDL assembly and secretion and facilitate spatiotemporal interrogation induced by pharmacologic and genetic perturbations.
载脂蛋白 B (APOB) 含有非常低密度脂蛋白 (VLDL) 的产生、分泌和肝细胞清除是肝和循环脂质水平的主要决定因素。上述任何过程的损害都与多种疾病的发展有关。尽管已经发现了控制肝脏 VLDL 代谢的基因和过程,但我们对所涉及的不同机制步骤的理解还远远不够。这些研究的一个障碍是缺乏可用于研究细胞中 APOB 并在细胞中跟踪 APOB 的可行的肝细胞为基础的系统,这是本研究解决的问题。
为了便于对 VLDL 代谢进行细胞研究,我们利用 CRISPR/Cas9 为基础的基因组工程,在人源性 HepG2 和 Huh-7 细胞系中生成了荧光蛋白 mNeonGreen 引入 APOB 基因座。这导致 APOB100-mNeon 的产生,通过免疫荧光和电子显微镜成像主要定位于内质网 (ER) 和高尔基体。APOB100-mNeon 的产生和分泌可以在一段时间内通过介质中的定量跟踪,并导致通过 LDL 受体途径摄取的脂蛋白的产生。重要的是,APOB-mNeon 的产生和分泌对已建立的药理学和生理学治疗以及已知影响人类 VLDL 产生的遗传修饰因子敏感。作为一个范例,我们使用 HepG2-APOBmNeon 细胞来研究 APOB 的内质网相关降解。使用针对所有已建立的膜相关内质网驻留 E3 泛素连接酶的专用 sgRNA 文库,鉴定出 SYNV1 是负责 HepG2 细胞中未脂质化的 APOB 降解的 E3。
总之,本文报道的工程细胞允许研究肝 VLDL 的组装和分泌,并促进由药理学和遗传学扰动诱导的时空询问。