文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种从重症监护病房常规测量的颅外信号生成颅内压波形的深度学习方法。

A deep learning approach for generating intracranial pressure waveforms from extracranial signals routinely measured in the intensive care unit.

机构信息

Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.

Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.

出版信息

Comput Biol Med. 2024 Jul;177:108677. doi: 10.1016/j.compbiomed.2024.108677. Epub 2024 May 29.


DOI:10.1016/j.compbiomed.2024.108677
PMID:38833800
Abstract

Intracranial pressure (ICP) is commonly monitored to guide treatment in patients with serious brain disorders such as traumatic brain injury and stroke. Established methods to assess ICP are resource intensive and highly invasive. We hypothesized that ICP waveforms can be computed noninvasively from three extracranial physiological waveforms routinely acquired in the Intensive Care Unit (ICU): arterial blood pressure (ABP), photoplethysmography (PPG), and electrocardiography (ECG). We evaluated over 600 h of high-frequency (125 Hz) simultaneously acquired ICP, ABP, ECG, and PPG waveform data in 10 patients admitted to the ICU with critical brain disorders. The data were segmented in non-overlapping 10-s windows, and ABP, ECG, and PPG waveforms were used to train deep learning (DL) models to re-create concurrent ICP. The predictive performance of six different DL models was evaluated in single- and multi-patient iterations. The mean average error (MAE) ± SD of the best-performing models was 1.34 ± 0.59 mmHg in the single-patient and 5.10 ± 0.11 mmHg in the multi-patient analysis. Ablation analysis was conducted to compare contributions from single physiologic sources and demonstrated statistically indistinguishable performances across the top DL models for each waveform (MAE±SD 6.33 ± 0.73, 6.65 ± 0.96, and 7.30 ± 1.28 mmHg, respectively, for ECG, PPG, and ABP; p = 0.42). Results support the preliminary feasibility and accuracy of DL-enabled continuous noninvasive ICP waveform computation using extracranial physiological waveforms. With refinement and further validation, this method could represent a safer and more accessible alternative to invasive ICP, enabling assessment and treatment in low-resource settings.

摘要

颅内压 (ICP) 通常用于监测严重脑疾病(如创伤性脑损伤和中风)患者的治疗。评估 ICP 的既定方法需要大量资源且具有高度侵入性。我们假设可以通过从重症监护病房 (ICU) 中常规采集的三个颅外生理波形无创地计算 ICP 波形:动脉血压 (ABP)、光体积描记 (PPG) 和心电图 (ECG)。我们评估了 10 名患有严重脑疾病的 ICU 患者超过 600 小时的高频 (125 Hz) 同时采集的 ICP、ABP、ECG 和 PPG 波形数据。数据以非重叠的 10 秒窗口分段,使用 ABP、ECG 和 PPG 波形来训练深度学习 (DL) 模型以再现并发的 ICP。在单患者和多患者迭代中评估了六种不同 DL 模型的预测性能。在单患者分析中,最佳性能模型的平均平均误差 (MAE) ± 标准偏差为 1.34 ± 0.59 mmHg,在多患者分析中为 5.10 ± 0.11 mmHg。消融分析用于比较单个生理源的贡献,并证明了每个波形的顶级 DL 模型之间的性能在统计学上没有区别(MAE ± 标准偏差分别为 6.33 ± 0.73、6.65 ± 0.96 和 7.30 ± 1.28 mmHg,用于 ECG、PPG 和 ABP;p = 0.42)。结果支持使用颅外生理波形通过 DL 实现连续无创 ICP 波形计算的初步可行性和准确性。经过改进和进一步验证,这种方法可能代表一种更安全、更易获得的替代侵入性 ICP 的方法,能够在资源匮乏的环境中进行评估和治疗。

相似文献

[1]
A deep learning approach for generating intracranial pressure waveforms from extracranial signals routinely measured in the intensive care unit.

Comput Biol Med. 2024-7

[2]
Imputation of the continuous arterial line blood pressure waveform from non-invasive measurements using deep learning.

Sci Rep. 2021-8-3

[3]
An algorithm to detect dicrotic notch in arterial blood pressure and photoplethysmography waveforms using the iterative envelope mean method.

Comput Methods Programs Biomed. 2024-9

[4]
A Spectral Approach to Model-Based Noninvasive Intracranial Pressure Estimation.

IEEE J Biomed Health Inform. 2020-8

[5]
A Novel Methodology for Intracranial Pressure Subpeak Identification Enabling Morphological Feature Analysis.

IEEE Trans Biomed Eng. 2025-4

[6]
Fully automated, real-time, calibration-free, continuous noninvasive estimation of intracranial pressure in children.

J Neurosurg Pediatr. 2019-8-23

[7]
Prediction of arterial blood pressure waveforms from photoplethysmogram signals via fully convolutional neural networks.

Comput Biol Med. 2021-11

[8]
A two-branch framework for blood pressure estimation using photoplethysmography signals with deep learning and clinical prior physiological knowledge.

Physiol Meas. 2025-2-7

[9]
A practical algorithm to reduce false critical ECG alarms using arterial blood pressure and/or photoplethysmogram waveforms.

Physiol Meas. 2016-8

[10]
Impaired cerebrovascular reactivity after acute traumatic brain injury can be detected by wavelet phase coherence analysis of the intracranial and arterial blood pressure signals.

J Clin Monit Comput. 2013-6-8

引用本文的文献

[1]
Deep learning-based model for detection of intracranial waveforms with poor brain compliance in southern Thailand.

Acute Crit Care. 2025-8

[2]
Machine Learning Approaches to Prognostication in Traumatic Brain Injury.

Curr Neurol Neurosci Rep. 2025-2-19

[3]
Evolving concepts in intracranial pressure monitoring - from traditional monitoring to precision medicine.

Neurotherapeutics. 2025-1

[4]
Derivation, External Validation and Clinical Implications of a deep learning approach for intracranial pressure estimation using non-cranial waveform measurements.

medRxiv. 2024-1-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索