Suppr超能文献

“你在听吗?”- 基于 EEG 的自然语音绝对听觉注意力解码。

'Are you even listening?' - EEG-based decoding of absolute auditory attention to natural speech.

机构信息

KU Leuven, Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium.

KU Leuven, Department of Neurosciences, Experimental Oto-Rhino-Laryngology (ExpORL), Leuven, Belgium.

出版信息

J Neural Eng. 2024 Jun 20;21(3). doi: 10.1088/1741-2552/ad5403.

Abstract

In this study, we use electroencephalography (EEG) recordings to determine whether a subject is actively listening to a presented speech stimulus. More precisely, we aim to discriminate between an active listening condition, and a distractor condition where subjects focus on an unrelated distractor task while being exposed to a speech stimulus. We refer to this task as absolute auditory attention decoding.We re-use an existing EEG dataset where the subjects watch a silent movie as a distractor condition, and introduce a new dataset with two distractor conditions (silently reading a text and performing arithmetic exercises). We focus on two EEG features, namely neural envelope tracking (NET) and spectral entropy (SE). Additionally, we investigate whether the detection of such an active listening condition can be combined with a selective auditory attention decoding (sAAD) task, where the goal is to decide to which of multiple competing speakers the subject is attending. The latter is a key task in so-called neuro-steered hearing devices that aim to suppress unattended audio, while preserving the attended speaker.Contrary to a previous hypothesis of higher SE being related with actively listening rather than passively listening (without any distractors), we find significantly lower SE in the active listening condition compared to the distractor conditions. Nevertheless, the NET is consistently significantly higher when actively listening. Similarly, we show that the accuracy of a sAAD task improves when evaluating the accuracy only on the highest NET segments. However, the reverse is observed when evaluating the accuracy only on the lowest SE segments.We conclude that the NET is more reliable for decoding absolute auditory attention as it is consistently higher when actively listening, whereas the relation of the SE between actively and passively listening seems to depend on the nature of the distractor.

摘要

在这项研究中,我们使用脑电图(EEG)记录来确定被试是否在积极地聆听呈现的语音刺激。更准确地说,我们旨在区分主动聆听条件和分心条件,在主动聆听条件下,被试在暴露于语音刺激的同时专注于不相关的分心任务;而在分心条件下,被试观看无声电影作为分心任务,我们引入了一个具有两个分心条件的新数据集(默读文本和进行算术练习)。我们专注于两个 EEG 特征,即神经包络跟踪(NET)和频谱熵(SE)。此外,我们还研究了这种主动聆听条件的检测是否可以与选择性听觉注意力解码(sAAD)任务相结合,在该任务中,目标是决定被试正在关注的多个竞争说话者中的哪一个。后者是所谓的神经引导听力设备中的关键任务,旨在抑制未被关注的音频,同时保留被关注的说话者。与之前的假设相反,即较高的 SE 与主动聆听而不是被动聆听(没有任何干扰)相关,我们发现主动聆听条件下的 SE 显著低于干扰条件。然而,当主动聆听时,NET 始终显著更高。同样,我们表明,当仅在最高 NET 段上评估准确性时,sAAD 任务的准确性会提高。但是,当仅在最低 SE 段上评估准确性时,情况则相反。我们得出结论,NET 更可靠用于解码绝对听觉注意力,因为当主动聆听时它始终更高,而 SE 之间的主动聆听和被动聆听之间的关系似乎取决于干扰的性质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验