Suppr超能文献

通过卤素换位精确调控非稠环电子受体的分子间相互作用和分子堆积以制备高性能有机太阳能电池

Precisely Regulating Intermolecular Interactions and Molecular Packing of Nonfused-Ring Electron Acceptors via Halogen Transposition for High-Performance Organic Solar Cells.

作者信息

Gu Xiaobin, Zeng Rui, Hou Yuqi, Yu Na, Qiao Jiawei, Li Hongxiang, Wei Yanan, He Tengfei, Zhu Jinge, Deng Jiawei, Tan Senke, Zhang Cai'e, Cai Yunhao, Long Guankui, Hao Xiaotao, Tang Zheng, Liu Feng, Zhang Xin, Huang Hui

机构信息

College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China.

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

Angew Chem Int Ed Engl. 2024 Aug 19;63(34):e202407355. doi: 10.1002/anie.202407355. Epub 2024 Jul 17.

Abstract

The structure of molecular aggregates is crucial for charge transport and photovoltaic performance in organic solar cells (OSCs). Herein, the intermolecular interactions and aggregated structures of nonfused-ring electron acceptors (NFREAs) are precisely regulated through a halogen transposition strategy, resulting in a noteworthy transformation from a 2D-layered structure to a 3D-interconnected packing network. Based on the 3D electron transport pathway, the binary and ternary devices deliver outstanding power conversion efficiencies (PCEs) of 17.46 % and 18.24 %, respectively, marking the highest value for NFREA-based OSCs.

摘要

分子聚集体的结构对于有机太阳能电池(OSC)中的电荷传输和光伏性能至关重要。在此,通过卤素换位策略精确调控了非稠环电子受体(NFREA)的分子间相互作用和聚集结构,从而实现了从二维层状结构到三维互连堆积网络的显著转变。基于三维电子传输途径,二元和三元器件分别实现了17.46%和18.24%的出色功率转换效率(PCE),这是基于NFREA的OSC的最高值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验