Gu Xiaobin, Zeng Rui, Hou Yuqi, Yu Na, Qiao Jiawei, Li Hongxiang, Wei Yanan, He Tengfei, Zhu Jinge, Deng Jiawei, Tan Senke, Zhang Cai'e, Cai Yunhao, Long Guankui, Hao Xiaotao, Tang Zheng, Liu Feng, Zhang Xin, Huang Hui
College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China.
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China.
Angew Chem Int Ed Engl. 2024 Aug 19;63(34):e202407355. doi: 10.1002/anie.202407355. Epub 2024 Jul 17.
The structure of molecular aggregates is crucial for charge transport and photovoltaic performance in organic solar cells (OSCs). Herein, the intermolecular interactions and aggregated structures of nonfused-ring electron acceptors (NFREAs) are precisely regulated through a halogen transposition strategy, resulting in a noteworthy transformation from a 2D-layered structure to a 3D-interconnected packing network. Based on the 3D electron transport pathway, the binary and ternary devices deliver outstanding power conversion efficiencies (PCEs) of 17.46 % and 18.24 %, respectively, marking the highest value for NFREA-based OSCs.
分子聚集体的结构对于有机太阳能电池(OSC)中的电荷传输和光伏性能至关重要。在此,通过卤素换位策略精确调控了非稠环电子受体(NFREA)的分子间相互作用和聚集结构,从而实现了从二维层状结构到三维互连堆积网络的显著转变。基于三维电子传输途径,二元和三元器件分别实现了17.46%和18.24%的出色功率转换效率(PCE),这是基于NFREA的OSC的最高值。