Krupová Monika, Leszczenko Patrycja, Sierka Ewa, Hamplová Sára Emma, Klepetářová Blanka, Pelc Radek, Andrushchenko Valery
Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic; Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic; Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
Spectrochim Acta A Mol Biomol Spectrosc. 2024 Oct 15;319:124381. doi: 10.1016/j.saa.2024.124381. Epub 2024 Apr 29.
Adenosine is one of the building blocks of nucleic acids and other biologically important molecules. Spectroscopic methods have been among the most utilized techniques to study adenosine and its derivatives. However, most of them deal with adenosine in solution. Here, we present the first vibrational circular dichroism (VCD) spectroscopic study of adenosine crystals in solid state. Highly regular arrangement of adenosine molecules in a crystal resulted in a strongly enhanced supramolecular VCD signal originating from long-range coupling of vibrations. The data suggested that adenosine crystals, in contrast to guanosine ones, do not imbibe atmospheric water. Relatively large dimensions of the adenosine crystals resulted in scattering and substantial orientational artifacts affecting the spectra. Several strategies for tackling the artifacts have been proposed and tested. Atypical features in IR absorption spectra of crystalline adenosine (e.g., extremely low absorption in mid-IR spectral range) were observed and attributed to refractive properties of adenosine crystals.
腺苷是核酸及其他生物重要分子的组成成分之一。光谱方法一直是研究腺苷及其衍生物最常用的技术手段。然而,其中大多数研究的是溶液中的腺苷。在此,我们首次展示了对固态腺苷晶体的振动圆二色性(VCD)光谱研究。晶体中腺苷分子高度规则的排列导致了源自振动远程耦合的超分子VCD信号大幅增强。数据表明,与鸟苷晶体不同,腺苷晶体不会吸收大气中的水分。腺苷晶体相对较大的尺寸导致散射以及影响光谱的大量取向伪像。已经提出并测试了几种处理这些伪像的策略。观察到了结晶腺苷红外吸收光谱中的非典型特征(例如,中红外光谱范围内极低的吸收),并将其归因于腺苷晶体的折射特性。