Food Technology, Engineering and Nutrition, Lund University, Box 124, 221 00 Lund, Sweden.
SARomics Biostructures AB, Medicon Village, Scheelevägen 2, 223 81 Lund, Sweden.
J Colloid Interface Sci. 2024 Oct 15;672:244-255. doi: 10.1016/j.jcis.2024.05.157. Epub 2024 May 22.
Nonionic surfactants can counter the deleterious effect that anionic surfactants have on proteins, where the folded states are retrieved from a previously unfolded state. However, further studies are required to refine our understanding of the underlying mechanism of the refolding process. While interactions between nonionic surfactants and tightly folded proteins are not anticipated, we hypothesized that intermediate stages of surfactant-induced unfolding could define new interaction mechanisms by which nonionic surfactants can further alter protein conformation.
In this work, the behavior of three model proteins (human growth hormone, bovine serum albumin, and β-lactoglobulin) was investigated in the presence of the anionic surfactant sodium dodecylsulfate, the nonionic surfactant β-dodecylmaltoside, and mixtures of both surfactants. The transitions occurring to the proteins were determined using intrinsic fluorescence spectroscopy and far-UV circular dichroism. Based on these results, we developed a detailed interaction model for human growth hormone. Using nuclear magnetic resonance and contrast-variation small-angle neutron scattering, we studied the amino acid environment and the conformational state of the protein.
The results demonstrate the key role of surfactant cooperation in defining the conformational state of the proteins, which can shift away or toward the folded state depending on the nonionic-to-ionic surfactant ratio. Dodecylmaltoside, initially a non-interacting surfactant, can unexpectedly associate with sodium dodecylsulfate-unfolded proteins to further impact their conformation at low nonionic-to-ionic surfactant ratio. When this ratio increases, the protein begins to retrieve the folded state. However, the native conformation cannot be fully recovered due to remnant surfactant molecules still adsorbed to the protein. This study demonstrates that the conformational landscape of the protein depends on a delicate interplay between the surfactants, ultimately controlled by the ratio between them, resulting in unpredictable changes in the protein conformation.
非离子型表面活性剂可以抵消阴离子型表面活性剂对蛋白质的有害影响,使蛋白质从先前的未折叠状态中恢复折叠状态。然而,需要进一步的研究来完善我们对折叠过程潜在机制的理解。虽然预计非离子型表面活性剂与紧密折叠的蛋白质之间不会相互作用,但我们假设表面活性剂诱导的展开的中间阶段可以定义新的相互作用机制,通过这些机制,非离子型表面活性剂可以进一步改变蛋白质构象。
在这项工作中,研究了三种模型蛋白(人生长激素、牛血清白蛋白和β-乳球蛋白)在阴离子表面活性剂十二烷基硫酸钠、非离子型表面活性剂β-麦芽糖苷以及两者混合物存在下的行为。使用内源荧光光谱法和远紫外圆二色性法确定蛋白质发生的转变。基于这些结果,我们为人生长激素开发了一个详细的相互作用模型。使用核磁共振和对比变化小角中子散射,我们研究了蛋白质的氨基酸环境和构象状态。
结果表明,表面活性剂的协同作用在确定蛋白质的构象状态方面起着关键作用,这种构象状态可以根据非离子型与离子型表面活性剂的比例向折叠状态或远离折叠状态转移。最初是非相互作用的麦芽糖苷可以与十二烷基硫酸钠展开的蛋白质意外缔合,从而在低非离子型与离子型表面活性剂比例下进一步影响其构象。当这个比例增加时,蛋白质开始恢复折叠状态。然而,由于仍有残留的表面活性剂分子吸附在蛋白质上,无法完全恢复天然构象。本研究表明,蛋白质的构象景观取决于表面活性剂之间的微妙相互作用,最终由它们之间的比例控制,导致蛋白质构象的不可预测变化。