Ferreira Luís P, Jorge Carole, Lagarto Matilde R, Monteiro Maria V, Duarte Iola F, Gaspar Vítor M, Mano João F
Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
Acta Biomater. 2024 Jul 15;183:74-88. doi: 10.1016/j.actbio.2024.05.054. Epub 2024 Jun 3.
The diverse biomolecular landscape of tissue-specific decellularized extracellular matrix (dECM) biomaterials provides a multiplicity of bioinstructive cues to target cells, rendering them highly valuable for various biomedical applications. However, the isolation of dECM biomaterials entails cumbersome xenogeneic enzymatic digestions and also additional inactivation procedures. Such, increases processing time, increments costs and introduces residues of non-naturally present proteins in dECM formulations that remain present even after inactivation. To overcome these limitations, herein we report an innovative conjugation of light and ultrasound-mediated dECM biomaterial processing for fabricating dECM biomaterials. Such approach gathers on ultrasound waves to facilitate dECM-in-liquid processing and visible light photocrosslinking of tyrosine residues naturally present in dECM biomaterials. This dual step methodology unlocked the in-air production of cell laden dECM hydrogels or programmable dECM hydrogel spherical-like beads by using superhydrophobic surfaces. These in-air produced units do not require any additional solvents and successfully supported both fibroblasts and breast cancer cells viability upon encapsulation or surface seeding. In addition, the optimized photoacoustic methodology also enabled a rapid formulation of dECM biomaterial inks with suitable features for biofabricating volumetrically defined living constructs through embedded 3D bioprinting. The biofabricated dECM hydrogel constructs supported cell adhesion, spreading and viability for 7 days. Overall, the implemented photoacoustic processing methodology of dECM biomaterials offers a rapid and universal strategy for upgrading their processing from virtually any tissue. STATEMENT OF SIGNIFICANCE: Leveraging decellularized extracellular matrix (dECM) as cell instructive biomaterials has potential to open new avenues for tissue engineering and in vitro disease modelling. The processing of dECM remains however, lengthy, costly and introduces non-naturally present proteins in the final biomaterials formulations. In this regard, here we report an innovative light and ultrasound two-step methodology that enables rapid dECM-in-liquid processing and downstream photocrosslinking of dECM hydrogel beads and 3D bioprinted constructs. Such photoacoustic based processing constitutes a universally applicable method for processing any type of tissue-derived dECM biomaterials.
组织特异性脱细胞细胞外基质(dECM)生物材料具有多样的生物分子格局,能为靶细胞提供多种生物指导信号,使其在各种生物医学应用中具有极高价值。然而,dECM生物材料的分离需要繁琐的异种酶消化以及额外的灭活程序。这不仅增加了处理时间、提高了成本,还在dECM制剂中引入了非天然存在的蛋白质残留,即便经过灭活处理这些残留依然存在。为克服这些限制,在此我们报告一种创新方法,即结合光和超声介导的dECM生物材料加工来制备dECM生物材料。这种方法利用超声波促进dECM在液体中的加工以及dECM生物材料中天然存在的酪氨酸残基的可见光光交联。这种两步法通过使用超疏水表面实现了在空气中生产负载细胞的dECM水凝胶或可编程的dECM水凝胶球形珠。这些在空气中生产的单元不需要任何额外溶剂,并且在封装或表面接种后成功支持成纤维细胞和乳腺癌细胞的活力。此外,优化后的光声方法还能够快速制备具有合适特性的dECM生物材料墨水,以便通过嵌入式3D生物打印生物制造体积确定的活体构建体。生物制造的dECM水凝胶构建体在7天内支持细胞黏附、铺展和存活。总体而言,所实施的dECM生物材料光声加工方法为从几乎任何组织升级其加工提供了一种快速且通用的策略。重要性声明:利用脱细胞细胞外基质(dECM)作为细胞指导生物材料有潜力为组织工程和体外疾病建模开辟新途径。然而,dECM的加工仍然漫长、昂贵,并且在最终生物材料制剂中引入了非天然存在的蛋白质。在这方面,我们在此报告一种创新的光和超声两步法,该方法能够实现快速的dECM在液体中的加工以及dECM水凝胶珠和3D生物打印构建体的下游光交联。这种基于光声的加工构成了一种普遍适用的方法,可用于加工任何类型的组织衍生dECM生物材料。
Tissue Eng Part B Rev. 2025-4
Tissue Eng Regen Med. 2025-7
ACS Appl Mater Interfaces. 2025-6-25
2025-1
J Mater Chem B. 2024-1-17
Health Technol Assess. 2006-9
Mater Today Bio. 2025-5-12