Suppr超能文献

基于动态模式和异常评估的立铣过程原位刀具磨损状态监测

In-situ tool wear condition monitoring during the end milling process based on dynamic mode and abnormal evaluation.

作者信息

Chen Min, Mao Jianwei, Fu Yu, Liu Xin, Zhou Yuqing, Sun Weifang

机构信息

Zhejiang Dewei Cemented Carbide Manufacturing Co., Ltd., Wenzhou, 325699, China.

College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, 325035, China.

出版信息

Sci Rep. 2024 Jun 5;14(1):12888. doi: 10.1038/s41598-024-63865-4.

Abstract

Rapid tool wear conditions during the manufacturing process are crucial for the enhancement of product quality. As an extension of our recent works, in this research, a generic in-situ tool wear condition monitoring during the end milling process based on dynamic mode and abnormal evaluation is proposed. With the engagement of dynamic mode decomposition, the real-time response of the sensing physical quantity during the end milling process can be predicted. Besides, by constructing the graph structure of the time series and calculating the difference between the predicted signal and the real-time signal, the anomaly can be acquired. Meanwhile, the tool wear state during the end milling process can be successfully evaluated. The proposed method is validated in milling tool wear experiments and received positive results (the mean relative error is recorded as 0.0507). The research, therefore, paves a new way to realize the in-situ tool wear condition monitoring.

摘要

制造过程中的快速刀具磨损情况对于提高产品质量至关重要。作为我们近期工作的延伸,本研究提出了一种基于动态模式和异常评估的端铣削过程中通用的原位刀具磨损状态监测方法。通过动态模式分解,可以预测端铣削过程中传感物理量的实时响应。此外,通过构建时间序列的图结构并计算预测信号与实时信号之间的差异,可以获取异常情况。同时,能够成功评估端铣削过程中的刀具磨损状态。所提出的方法在铣削刀具磨损实验中得到验证,并取得了积极成果(平均相对误差记录为0.0507)。因此,该研究为实现原位刀具磨损状态监测开辟了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1783/11153564/c59b36ac083b/41598_2024_63865_Fig1_HTML.jpg

相似文献

3
Multivariate time series data of milling processes with varying tool wear and machine tools.
Data Brief. 2023 Sep 14;50:109574. doi: 10.1016/j.dib.2023.109574. eCollection 2023 Oct.
4
Study on In-Situ Tool Wear Detection during Micro End Milling Based on Machine Vision.
Micromachines (Basel). 2022 Dec 30;14(1):100. doi: 10.3390/mi14010100.
5
An online monitoring method of milling cutter wear condition driven by digital twin.
Sci Rep. 2024 Feb 29;14(1):4956. doi: 10.1038/s41598-024-55551-2.
8
Micro-Milling Tool Wear Monitoring via Nonlinear Cutting Force Model.
Micromachines (Basel). 2022 Jun 14;13(6):943. doi: 10.3390/mi13060943.

引用本文的文献

1
Tool wear prediction based on XGBoost feature selection combined with PSO-BP network.
Sci Rep. 2025 Jan 24;15(1):3096. doi: 10.1038/s41598-025-85694-9.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验